Single Board Computes
Single Board Computes
With the development of PCs there was a sharp shift away from SBC, with computers being constructed from a motherboard, with functions like serial ports, disk drive controller and graphics being provided on daughterboards. The recent availability of advanced chip sets providing most of the I/O features as embedded components allows motherboard manufacturers to offer motherboards with I/O traditionally provided by daughterboards. Most PC motherboards now offer on-board support for disk drives including IDE and SATA with RAID, graphics, Ethernet, and traditional I/O such as serial and parallel ports, USB, and keyboard/mouse support. Plug-in cards are now more commonly high performance graphics cards (really graphic co-processors), high end RAID controllers, and specialized I/O cards such as data acquisition and DSP (Digital Signal Processor) boards
Applications
Single Board Computers are now commonly defined across two distinct architectures: no slots and slot support.
Embedded Single Board Computers are boards providing all the required I/O with no provision for plug-in cards. Applications are typically gaming (slot machines, video poker), kiosk, and machine control. Embedded Single Board Computers are much smaller than ATX motherboards, and provide an I/O mix more targeted to an industrial application such as on-board digital and analog I/O, on-board bootable flash so no hard drive is required, no on-board video, etc.
The term "Single Board Computer" now generally applies to an architecture where the Single Board Computer is plugged into a backplane to provide for I/O cards. In the case of PC104, the bus is not a backplane in the traditional sense but is a series of pin connectors allowing I/O boards to be stacked.
Single board computers are most commonly used in industrial situations where they are used in rackmount format for process control or embedded within other devices to provide control and interfacing. Because of the very high levels of integration, reduced component counts and reduced connector counts, SBCs are often smaller, lighter, more power efficient and more reliable than comparable multi-board computers.
The primary advantage of ATX motherboards versus Single Board Computers is cost. Motherboards are manufactured by the millions for the consumer and office markets allowing tremendous economies of scale. Single Board Computers, on the other hand, are in a specialized market niche and are manufactured in much smaller numbers with the resultant higher cost. Motherboards and Single Board Computers now offer similar levels of feature integration meaning that a motherboard failure in either standard will require equivalent replacement.
The primary advantage of a PICMG Single Board Computer is the availability of backplanes offering virtually any slot configuration including legacy ISA support. Motherboards tend to the latest slot technology such that PCI slots are becoming legacy support with PCI-Express becoming the standard. In addition, motherboards offer, at most, 7 slots while backplanes can offer up to 20 slots. In a backplane 12.3" wide, similar in size to an ATX motherboard at 12", a backplane with a Single Board Computer can offer 12 slots for I/O cards with virtually any mix of slot types.