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EULER’S THEORY FOR LONG SLENDER STRUTS 
 
In the section on Combined Bending and Direct Stresses it was shown that an offset load 
from the neutral axis produces both direct and bending stresses.  If the load were placed 
directly on the neutral axis then only a direct compressive (or tensile) stress would result. 
 
However, this only applies if the component is considered to be very short in comparison to 
its cross section dimensions.  The longer the length becomes, then the more likely the 
component is to fail by BUCKLING. 
 
A strut is a member subjected to a direct compressive stress.  The load carrying capacity of 
relatively short struts with large cross section area is limited by the crushing strength of the 
material.  Long and slender struts, however, can become unstable and tend to buckle. 
 
A small transverse load applied to the mid-point of a slender strut will produce a lateral 
deflection, which disappears when the transverse load is removed.  As the compressive 
load is increased a point is reached at which the lateral deflection does not disappear.  At 
this point the strut is in a state of unstable equilibrium and the slightest lateral disturbance 
will cause it to buckle.  Such a strut has clearly reached the limit of its load carrying 
capacity, and the load is said to have reached its critical value. 
 
The critical load for a strut may be found using EULER’S THEORY, which is based on 
the assumptions below: 
 
1. The material is homogenous. 
2. The load is applied axially at the centroid of the section. 
3. The cross section is uniform. 
4. The strut is initially straight. 
5. The direct stresses due to the compressive load are negligible compared with the 

bending stresses induced by buckling. 
 
It can be shown that Euler’s Critical load, FE Newtons, is given by: 
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FE is the critical Euler load to cause buckling. 
E is Young’s Modulus. 
I is the MINIMUM second moment of area of the cross section of the strut. 
L is the length of the strut. 
n depends on the manner of buckling.  This is a number which is determined from the 

way in which the strut is supported.  There are numerous ways in which the strut can 
be supported, but the main ones are: 
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Diagram (a) shows a strut pin jointed at each end.  There are several modes of failure as 
illustrated, but it is the smallest value of load, and therefore n, which will cause failure.  In 
this case the failure will be when n = 1 as in diagram (b). 
 
Diagram (c) shows a strut built in at one end and free to move at the other. 
 
Diagram (d) shows a strut built in at both ends. 
 
Diagram (e) shows a strut built in at one end and allowed to move only vertically at the 
other. 
 
Each of the above diagrams shows that the strut will deflect into a complete or part sine 
wave.  The value of n is the NUMBER OF COMPLETE HALF SINE WAVES.  The 
larger the value of n (and hence the larger the number of half sine waves) the larger the 
load needed to cause buckling.  If the strut can be supported along its length as often as 
possible so that no lateral movement is possible, the value of n increases and the strut 
becomes more stable. 
 
Effective Length of a strut 
 
If a strut is made to deflect into two half sine waves, then it could be considered as two 
separate struts which are in series, each being half the length of the original strut.  The 
critical load will then be greater. 
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In general, if a strut is made to deflect into n half sine waves, then the strut becomes ‘n 

struts’ each of length 
n
L  where L is the length of the original strut.  Therefore 

 

n
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The Euler equation then becomes 
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Slenderness Ratio 
 
Since I = Ak2 where A is the cross sectional area of the strut and k is the MINIMUM radius 
of gyration, then Euler’s equation can be written as 
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This shows that for a given cross sectional area A, the critical load FE is inversely 

proportional to the square of the ratio 
k
l .  This determines when instability will start and is 

called the Slenderness Ratio.  For most engineering materials and applications, Euler’s 
equation can only be used when the slenderness ratio is greater than 120.  At values less 
than this the strut will be stable and will only suffer direct compressive stress. 
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WORKED EXAMPLE 
 
A strut is 2 m long and has a rectangular cross section 30 mm × 20 mm.  It is pin jointed at 
each end and is constrained to move axially in guides.  E for the material is 200 GN/m2. 
 
(a) What is the value of n to be used in Euler’s equation? 

 
This strut is the same type as in diagram (b) in the notes. 
 
Therefore the value of n is 1.  Answer 
 

(b) What is the effective length of the strut? 
 

The effective length is l = 
n
L  = 

1
2  = 2 meters Answer 

 
(c) What is the cross sectional area of the strut? 

 
Area = 30 × 20 = 600 mm2 Answer 
 

(d) What is the minimum second moment of area I? 
 

The value of I, for a rectangular cross section, is given by I = 
12
bd3

.  Therefore the 

minimum will be when b = 30 mm and d = 20 mm. 
 

Answer
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(Note! The maximum value of I would be when b = 20 mm and d = 30 mm giving I as 
45000 mm4) 
 

(e) What is the minimum radius of gyration, k? 
 

Answer33.33k
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(f) What is the slenderness ratio for the strut? 
 

Slenderness ratio = Answer
mm5.774
mm2000

k
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This means that since the value is greater than 120, Euler’s equation can be used to 
determine the critical load for buckling. 
 

(g) Determine Euler’s Critical Load for this strut. 
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This means that if the load is less than 9.891 kN, the strut will be stable and will only 
suffer a direct compressive stress.  If the load is greater than 9.891 kN, the strut will be 
unstable and will fail due to buckling. 
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STUDENT EXAMPLES 
 
1.  A vertical strut is 16 m long.  Its cross section is a symmetrical I section where the 

thickness of material is 10 mm.  The flanges are 250 mm long and the web is 300 mm 
long.  The strut is built in at both ends and E for the material is 200 GN/m2. 
(a) Calculate the minimum value of I. 
(b) Calculate the slenderness ratio. 
(c) Calculate the critical load. 
 
(a) 26.07 × 10-6 m4 (b) 140 (c) 805.6 kN 
 

2.  A strut consists of a straight metal bar 1 m long and of rectangular cross section 12 mm 
× 5 mm.  It is pin jointed at each end and E for the material is 70 GN/m2. 
(a) Calculate the minimum value of I. 
(b) Calculate the slenderness ratio. 
(c) Calculate the critical load. 
 
(a) 0.125 × 10-9 m4 (b) 693 (c) 86.36 N 
 

3.  An alloy tube of length 3.2 m has an external diameter of 18 mm and an internal 
diameter of 13 mm.  When subjected to an axial tensile force of 4.5 kN, the extension of 
the tube was 1.1 mm. 
(a) Calculate the modulus of elasticity for the tube material. 
(b) The tube is to be used as a vertical strut to carry an axial compressive load. 

(i) If the ends are pin jointed, calculate Euler’s critical load. 
(ii) If one end is built in and the other end free, calculate Euler’s critical load. 

 
(a) 107.5 GN/m2 (b)(i) 388.8 N (ii) 777.6 N 
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