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Unit 7  
Heat Transfer 
 
In this section we will examine the theory of one 
dimensional steady state heat transfer and its application 
through worked examples and self assessed questions.  
 
 
7.1 The modes of heat transfer 
7.2 Conduction through single and multilayer flat 

surfaces. 
7.3 Heat transfer through surface boundary layers of 

fluid 
7.4 Conduction through thin and thick cylinders 

including surface boundary layers 
7.5  Heat transfer by thermal radiation  
7.6 Heat transfer in shell and tube heat exchangers 
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7.1 Modes of Heat transfer 
Heat energy causes gas and liquid molecules to move around faster and causes 
particles in solids to vibrate more rapidly. 
This extra kinetic energy in the particles is dissipated to the surrounding and shows 
up as a rise in temperature. 
The three main modes of heat transfer are conduction convection and radiation 
 
Conduction  
 
This occurs mainly in solids. 
It is the process where vibrating particles pass on their extra vibration energy to 
neighbouring particles. 
This process continues throughout the solid and the extra vibrational energy passed 
through causes a rise in temperature on the other side  
 
 
 
 
 
 
 
 
 
 
 
 
This normal process of conduction as illustrated above is always very slow, but in 
most non-metal solids it is the only way that heat can pass through. 
Non metals such as plastic wood etc. are poor conductors and thus good insulators. 
 
Metals conduct so well because the electrons are free to move inside the metal.   
At the hot end the electrons move faster and diffuse more quickly through the metal 
so the electrons carry their energy quite a long way before giving it up in a collision. 
This is a much faster way of transferring the energy through the metal than slowly 
passing it between jostling neighbouring atoms. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

HEAT FLOW 

Heat carried in metals by free electrons
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Convection 
Gases and liquids are usually free to move so convection takes place when the more 
energetic particles move from a hot region to a cold region and take their heat energy 
with them.  They then transfer their heat energy by the process of collisions, which 
warm up the surroundings. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Natural convection currents are caused by changes in density. 
Forced convection is carried out mechanically. 
 
Thermal Radiation 
Thermal radiation or infra red radiation consists of only one fairly narrow band in the 
spectrum of electromagnetic waves at a frequency just below that of visible light.  
They are emitted due to the agitation of molecules within a substance and whenever, 
these waves are absorbed by matter there is a gain of internal energy.  
Thermal Radiation 

� Travels in straight lines at the speed of light 
� Travels through vacuum 
� Can be effectively reflected by a silver surface 
� Only travels through transparent media such as air, glass and water. 
� Its behaviour is strongly dependent on surface colour and texture.   

 
All objects are continually emitting and absorbing heat radiation, the hotter they are 
the more radiation they emit, cooler objects absorb this radiation. 
 
Dark matt surfaces absorb heat radiation falling on them more strongly than bright 
glossy surfaces such as gloss white or silver. 
Dark matt surfaces also emit more radiation than glossy surfaces. 
Silvered surfaces reflect nearly all the thermal radiation falling on them. 

Water above heated by convection 

Heater coils 

Almost no conduction in water 

Water stays cold below the heater 
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Thickness 
            x 

Temperature
     Drop 

T1 

T2 

Face F2 

 

Q    Flow of heat through      
the plate 

Face F1 
Area of plate 

subject to heat 

7.2 Conduction through single and multilayer flat surfaces. 
 
Fourier’s Law 
Heat transfer through a single plate 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Let us look at a section of flat plate  
The thickness  is  “x” metres 
The front face F1 is at temperature T1 K 
The rear face F2 at temperature T2 K 
 
We will assume that temperature T1  is higher than temperature T2,  heat will then 
flow in the direction shown. 
 
If the material has uniform conducting properties, the temperature will decrease at a 
uniform rate as we move from the front to the back of the plate as shown in the sketch 
above. 
 
The heat transfer “Q” per unit time from face F1 to face F2 will vary 
 

1. Directly as the temperature difference.          ( )21  toalproportion is TTQ −  
 
2. Directly as the area “A  ” of the plate.          AQ   toalproportion is  

 

3. Inversely as the thickness “x” of the plate.          
x
1  toalproportion is Q  
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These statements can be combined and written as    
 

( )
x

TTAQ 21  toalproportion is −   

 
 
Fourier’s law can now be written as 
 
 
 
 

Where λ is the constant of proportionality 
 

 It is called the coefficient of thermal conductivity.  
 

The units are Watts per metre Kelvin (W/mK)  
 

which gives the rate of heat transfer Q in Watts. 
 
Example 7.2-1 
A furnace has a wall thickness of 210 mm.  The temperature of the inner surface is 
935ºC and an outer surface temperature of 16ºC. The thermal conductivity of the wall 
material is 1.03 W/mK. 
Determine the heat flow through the wall. 
 
This is a direct application of Fourier’s equation. All we need to do is insert the 
relevant values taking due care with the units 
 
 
 
 
 
In this case we do not have the area, if we leave this out of the equation then the units 
of Q will be as follows. 
 
 
 
 
 
 
In other words the heat flow will be obtained per square meter of wall. 
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Conduction Through a composite wall 

T1 K T2 K T4 K 

Material 1 
Thickness x1 
λ 1W/mK,  

Material 2 
Thickness x2 
λ 2 W/mK 

Material 3 
Thickness x3 
λ3 W/mK 

Heat Flow Q 

T3 K 

Face F 4 

Face F 1 

 
Instead of a single plate imagine a wall made up of several layers of different 
materials in this case three. 
 
Layer 1  
Thickness “x1”, Thermal conductivity λ1, outer surface temperature T1 and interface 
temperature T2 
 
Layer 2  
Thickness “x2”, Thermal conductivity λ2 and interface  temperatures T2 and T3 
 
Layer 3  
Thickness “x3”, Thermal conductivity λ3, interface temperature T3 and outer surface 
temperature T4 
 
Any heat transferred from face F1 to face F4 must pass through each layer and 
therefore as the same quantity of heat energy is transferred across each layer through 
the same area in the same time then the rate of heat transfer is the same through each 
layer. 
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Adding these equations gives 
 
 
 
 
 
 
 
 
 
 
 
The term           is the thermal resistance of a single layer of material and 
 
 
                  Is the thermal resistance of the composite wall. 
 
 
Example 7.2-2  Composite wall 
 
A furnace wall is made up of a steel plate 12 mm thick, lined on the inside with silica 
brick 150 mm thick and on the outside with magnasite brick 150 mm thick. 
The temperature on the inside face of the furnace brick is 700˚C and on the outer wall 
150˚C. 
a) Determine  

(i) The heat transferred through the composite wall   
(ii) The interface temperatures. 

 
b) If the heat transfer is to be reduced to 1kW/m2  by means of air gap between 

the steel and the magnasite brick, determine the width of the air gap. 
 
Steel λ = 17.3 W/mK,     Magnasite brick λ = 5.3 W/mK,  
Silica brick λ = 1.7 W/mK,    Air λ = 0.035 W/Mk 
 
This is a typical  composite wall example it requires a diagram to fix the arrangement 
of the materials, then we can apply Fourier’s equation to calculate the required 
values. 
 
When we come to put the numbers in the equation we must make sure that they are 
all compatible, millimetre to meters and so on,  
However when it comes to the temperature we need the temperature difference so we 
do not need to add 273 to the temperatures given since the value is cancelled out. 
 
700˚C – 150˚C = 550˚C is the same as  973 – 423 = 550 K 
 
In the following example Kelvin has been used for the temperature.  
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This is the diagram for the first condition 

T1 973 K T2 T3 
T4 423 K 

Silica 
x = 150 mm 
λ = 1.7 W/mK,  

Steel 
x =12 mm  
λ = 17.3 W/mK  

Magnasite  
x = 150 mm 
λ = 5.3 W/mK  

Heat Flow Q 

 
 
 
Fourier’s law gives                                         where                is the thermal resistance 
of the wall  
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
This value can now be placed in the fourier equation 
 
 
 
 
 
 
           
 
 
Thus the heat flow through the wall  is 4.6 kW per m2    
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The heat flow through each part of the wall is the same. 
The interface temperatures can be found by applying Fourier’s law across each 
section of the wall in turn and rearranging the equation to obtain the temperature. 
 
To find T2 ,  rearrange                                  to give 
 
 
 and finally 
 
 
   
 
 
 
 
 
The interface temperature T3   is found in the same way by applying the equation 
across the steel plate or the magnasite brick, taking care to use the correct temperature 
 
Using the above equation across the steel plate gives 
 
 
 
 
 
 
 
We could also work back from temperature T4 and obtain the same result 
 
 
 
 
 
 
 
 
 
 
 
 
The second part of the problem uses the same procedures but from a different 
approach. 
Another diagram is required to check the new arrangement, to see what we have and 
perhaps more importantly what we haven’t. 



South Tyneside College  Class  One Applied Heat         Module 7  Heat Transfer 
 7-10 
 

( )

∑

−=

λ
x
TTAQ 41

( )
Q

TTAx 41 −=∑ λ

W
Kmx 2

55.0
1000

423973 =−=∑ λ

4328.01172.055.0 =−=
λ
x

035.04328.0 ×=x

4328.0
035.0

=x

mx 01515.0=

mK
W

W
Kmm ×=

2

This is the new arrangement. 
 

T1 973 K T2 T3 T4 
T5 423 K 

Silica 
x = 150 mm 
λ = 1.7 W/mK,  

Steel 
x =12 mm  
λ = 17.3 W/mK  

Magnasite  
x = 150 mm 
λ = 5.3 W/mK  

Air  
x = to find 
λ = 0.035 W/Mk 

Heat Flow Q 1000 w / m 2 

If we apply Fourier’s equation the only unknown is the thermal resistance of the wall. 
If we now calculate a new value for this the difference will be due to the  air gap and 
the size of the air gap can be determined. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If we put the units in the equation we have  
 
 
The thickness of the air gap is therefore 15.15 mm 
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7.3 Heat transfer through boundary layers of fluid 
 
Newton’s law of Cooling 
We have looked at conduction through a wall from surface to surface, however it is 
more usual to measure the temperature of the surrounding atmosphere rather than the 
surface which means we have to take account of the fluid film on the surface over 
which the heat transfer is taking place. 
Conduction in fluids forms a very small part of the heat transfer, convection is the 
main factor. 
Convection is the name given to the motion of the fluid so that fresh fluid is available 
for heating or cooling, however there are also smaller currents within the bulk of the 
fluid which also assist in the distribution of the heat energy. 
Convection heat transfer can be broadly classified as, natural convection where the 
heat transfer between a solid and fluid is not disturbed by other effects and forced 
convection where the motion of the fluid is assisted by an external source. 
The analysis of the convection mechanism covers many variables, however  Issac 
Newton (1701) proposed a general equation to described convection heat transfer. 
 
Giving  Newton’s Law of Cooling  as  Q = h A (TW – T) 
 
“A” is the surface area, “TW” the surface temperature and “T” the Mean temperature 
of the fluid.       
 
“ h” is called the HEAT TRASNSFER COEFFICIENT which is defined as the 
amount of heat conducted through a film of fluid per unit area of surface in unit time 
for a unit temperature drop across the thickness of the film.  
 
This can be expressed in equation form as 
 
 
If we put the in the units we can see that 
 
Now the same amount of heat will pass through the solid and the fluid film therefore 
equating Fourier’s equation with Newton’s equation gives 
 
 
 
 
So in general                       where x is the thickness of the stagnant layer of fluid on  
 
the surface and λ is the thermal conductivity of the fluid. 
The value of “h” depends on the fluid and flow regime typical values are in the region 
of those shown below. 
 
Natural convection    0.004 –  0.05  W/m2K  
Forced  convection (air)   0.01   –  0.55  W/m2K  
Forced  convection (liquids)   0.1     –  5.5    W/m2K  
Boiling heat transfer (water)  1.0    -  110   W/m2K 
Condensation ( steam filmwise) 0.55 – 25.0 W/m2K 
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Heat Transfer, Fluid to Fluid, Through a Metal 

A B C D E 

T1 T2 T3 

T4 

 
 
Consider a gas flowing on one side of a metal plate and water flowing on the other.  
Adhering to the metal on the gas side is a layer of stagnant gas “B” and then the main 
gas stream “A”. 
On the waterside of the plate there will be a layer of very slow moving water “D” and 
then the main water flow “E”. 
 
The heat transferred from the gas to the water tube in three stages 
1) By convection from gas “A” to stagnant gas “B” 
2) By conduction and convection through the layer of gas “B” 
3) By conduction through plate “C” 
4) By conduction and convection through the layer of  water  “D” 
5) By convection from water “D” to the main flow of water “E” 
 
In each of these stages, there will be a drop in temperature and since gas is a poor 
conductor, there will be a considerable drop in temperature through the layer of 
stagnant gas. 
 
T1 = temperature of the gas  
T2 = temperature of metal on the hot side of the plate. 
T3 = temperature of metal on the cold side of the plate 
T4 = temperature of the water 
λ = thermal conductivity of the metal 
x   =  thickness of the metal 
h1 = film heat transfer coefficient from gas to metal 
h2 = film heat transfer coefficient from metal to water 
 
Consider any area, “A”, through which heat transfer is “Q” 
 
Gas to metal  
 
 
Conduction through the metal 
 
 
Metal to water 
 

( )211 TTAhQ −=
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TTAQ 32 −= λ
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Adding these equations gives 
 
 
 
If we define an  overall heat transfer coefficient from gas to water as U the equation 
for heat transfer becomes   
  

Rearranging this gives us 
 
if we compare the equations for T1 –T4 then we can see that  
 
 

 

 

 
 
We now have one general equation                                          and an equation from 
which we can evaluate U.  
The equation for U can be expanded  or contracted to account for any number of 
layers providing due attention is paid to the temperature drop across the layers 
included. 
Using       as the temperature difference will give a positive value when 
the inside temperature is greater than the outside and a negative value when the 
outside temperature is greater than the inside.   
What we must remember is that we require the temperature difference, that heat 
always flows down the thermal gradient from high to low temperature and in this case 
the sign is indicating the direction of heat flow. 
In the following example                           has been used to give a positive value for 
the heat flow and due care has been taken in calculating the interface temperatures. 
 
Example 7.3-1 
A temporary cold store is to be made from mineral wool sandwiched between two 
layers of timber. 
The inner layer of timber will be 35 mm thick and the outer layer of timber will be 
40 mm thick. 
The refrigeration equipment available is capable of removing 40 Watts per square 
metre of wall area. 
The cold store is to be maintained at -20°C  in an ambient temperature of 22°C 
Calculate  

a) The minimum thickness of insulation 
b) i) The inner surface temperature 

ii) The interface temperature between the inner layer of wood and 
insulation 

iii) The interface temperature between the outer layer of wood and 
insulation 

iv) The outer surface temperature. 
 
For mineral wool insulation     λ = 0.042 W/mK 
For Timber    λ = 0.2 W/mK 
Surface heat transfer coefficient for inner and outer surface h = 14 W/m2K 
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Heat leakage into room 40 W/m 

22°C 
-20°C x 

λ = 0.042 
W/mK 

λ = 0.2 
W/mK 

λ = 0.2 
W/mK 

h = 14 
W/m2K 

h = 14 
W/m2K 

0.035 m 0.04 m 

Section of insulated wall  with surface fi lm coefficients 

2 

T1 

T4 T5 

T6 

T2 T3 

0714.02.0042.0
1175.07143.005.1 ++++=

insulationx

mx 02235.0=
042.0

51786.005.1 x+=

The first thing is to sketch the arrangement and insert all relevant data  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We need to find the thickness of insulation that will limit the heat flow to 40 W/m2 
 
The equation we need to use is this 
 
We have the rate of heat transfer Q = 40 W/m2 
We have the temperature change 22 to -20°C 
The only unknown is U the overall heat transfer coefficient we can use this to find the 
thickness from 
 
 
 
 
Now all we need to do is put a few numbers in the above equations 
 
Rearrange                                                to give 
 
 
And thus  
 
We can now use this to find the thickness of insulation 
 
 
 
 
 
 
 
 
 
 
 
 
 
The minimum thickness of insulation is 22.35 mm. 
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The task now is to determine the surface and interface temperatures. 
We could apply Newton’s equation and Fourier’s  equation in turn, however we have 
already calculated some values so it is easier to determine a new value for U in each 
case. 
 
 
We can rearrange our basic equation to give  
 
 
 
And 
 
Only the surface coefficient needs to be taken into account thus 
 
 
 
therefore U =14 W/m2K, this is just like using Newton’s equation 
 
 
 
 
 
For the next section T1 to T3 U includes the surface coefficient and a single layer of 
timber 
 
 
 
 
 
Therefore U = 4.011 W/m2K 
 
 
 
 
We can repeat this for the next section up to T4 which includes the insulation all we 
need to do is insert the values for 1/U from the first part. 
 

Therefore U= 1.28 W/m2K 
 
 
 
 
 
For the final temperature 
 
 
U= 1.022 W/m2K   and 
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7.4 Conduction through thin and thick cylinders including surface 
boundary layers 

 
Thin Wall 
If the thickness of the cylinder is small compared to its radius then we can ignore the 
fact that the outer surface area is greater than the inner surface area and just use 
Fourier’s equation as previous. 
 
The equation                                             can be used with the area  
 
Where “r” is the external radius “l” is the length of pipe “x” is the pipe thickness  
 
Thick Wall Cylinder 
However in most engineering applications, the pipe wall thickness is not negligible 
relative to its radius, it is therefore necessary to allow for the difference in areas 
caused by the different radii of the pipe. 

 
r1 r2 

r 

length  l Thickness dr 

 
Now consider the thick wall tube shown above, it has a length of “l”, internal radius 
“r1” and external radius “r2”. 
If we take an infinitely thin cylinder of thickness dr at a distance r from the axis of the 
tube, the temperature drop across the element of material will be dt. 
The amount of heat “Q” conducted through the wall of the tube will be the same as 
that which passes through this element. 
 
So if we apply Fourier equation 
 
 
 
 
 
 
 
 
 

( )
x

TTAQ 21 −= λ rlA π2=

( )
x

dtAQ −= λ

The negative sign is used because temperature will  decreases as the radius increases 

( )
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dtrlQ −= πλ2 ldt
r
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Integrate this equation between the inner and outer surface and putt 
temperature = t1 when radius = r1 and temperature = t2 when radius = r2  
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r1 r2 

Thickness dr 

This gives                                                     and 
 
 
 
It is more usual to obtain the heat transfer rate per unit length of pipe so if  Q′ is the 
heat transfer per unit length of tube, the equation becomes 
 
 
 
 
 
 
 
 
Conduction through a Hollow Sphere 
 
If we section a hollow sphere it would look identical to the end view of the thick 
cylinder shown below, however the heat transfer is only in a radial direction.   
The treatment is identical to that for the cylinder only this time the surface area of the 
sphere 4πr2 is used.  
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r4 

r3 

r2 

r1 

T1 

T2 

T3 

T4 

P 

L1 

L2 

F 

A 
F = Fluid in pipe 
P = pipe 
L1 = insulation layer 1 
L2 = insulation layer 2 
A = ambient surroundings

Conduction through a Composite Cylindrical wall  
This is treated in the same fashion as the flat composite wall.   
A typical example is a pipe carrying a hot or cold fluid with layers of insulation, it is 
modelled as a series of concentric tubes, that is tubes within tubes. 
If we take a thick walled  pipe with two layers of insulation as shown below and 
apply Fourier’s equation for a pipe in the same way as we did for the flat wall we end 
up with a general equation for heat flow from the inner to outer surface.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This equation for T1 -T4 is obtained by making the temperature drop the subject in the 
Fourier equation applied to each layer and adding the equations as we did for a 
composite flat wall. 
 
 
 
 
 
 
 
 
 
 
This equation does not take account of the fluid films on the inner and outer surfaces 
of the pipe, for this we need to apply Newton’s law of cooling to the inner and outer 
surface. 
 
The heat transfer through the inner surface film will be 
 
The heat transfer from the outer surface film will be 
 
If we apply the same process as we did for the composite wall and rearrange the 
equation across each layer making temperature the subject and adding them we can 
obtain an equation which covers the temperature change from the fluid to the 
atmosphere. 
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Where n is the number of tubes 
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You may want  to do this  to confirm that the equation below is the result. 
In this equation Tf and Ta are the mean temperatures, of the fluid in the pipe and 
surrounding atmosphere respectively. 
 
 
 
 
 
 
 
 
 
 
 
If we let U′ be an overall heat transfer coefficient per unit length of tube from the hot 
fluid to the cold ambient air, we can have a general equation which would cover heat 
transfer through an insulated pipe.  
 
Then           which gives                                     
 
 
this is identical to the equation above and gives 1/U′ as 
 
 
 
 
 
 
 
 
 
 
 
 
Or if you prefer 
 
 
 
 
 
 
 
 
We can use this equation                                     for all problems involving insulated 
pipes with or without surface heat transfer coefficients. 
All we need to do is obtain a value of U′ for the particular layer or layers we are 
dealing with and use the temperature change across the arrangement. 
Using this approach we only need to remember two equations and how to obtain U′   
Not forgetting that the rate of heat transfer is the same through each layer. 
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r1 

r2 
r3 

r1 = 25 mm Internal radius 
r2 = 35 mm Radius + Wall Thickness 
r1 = 55 mm Radius + Wall Thickness + Insulation Thickness 

h1 
h2 

Tf 

T3 

T1 

T2 

Ta 

Tf = f luid temperature 

T1 = Inner surface temperature of pipe 

T2 = Interface temperature between pipe and insulatuion 

T3 = Outer surface temperature of insulation 
Ta = temperature of the surrounding atmosphere 

Example 7.4-1 
 
The following data refers to a domestic hot water system. 
Pipe;  
Bore 50 mm, wall thickness 10 mm, thermal conductivity of material λ = 52 W/mk. 
Mean water temperature 60°C.  
Inner surface heat transfer coefficient h1 = 1136 W/m2k. 
Insulation: 
Thickness 20 mm,  λ = 0.17 W/mk, ambient air temperature 20°C. 
Outer surface heat transfer coefficient h2 = 9.7 W/m2k. 
 
Calculate 

a) The rate of heat lost per unit length of pipe. 
b) The inside surface temperature. 
c) The interface temperature between pipe and insulation. 
d) The outside surface temperature. 

 
The first thing is to sketch the arrangement of the various layers, taking care to use 
the correct dimensions and values. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Part (a) asks us to determine Q per unit length of pipe so we need to determine the 
overall heat transfer coefficient from the fluid temperature to the air temperature.  
 
In this case we have two surface coefficients and two layers the equations are 
modified to take account of this. 
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To calculate U′ over the four layers 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now we have a value for U′ 
 
 
 
 
 
The rate of heat transfer 
 
 
The remaining parts of the question ask us for temperatures at the film and material 
boundaries. 
Rather than use Newton’s law and Fourier’s law all we need do is calculate a value 
for U′ over the layers we are dealing with. 
We already have these values partly worked out above. 
 
For the inside surface temperature                                  therefore 
 
 
All we need is the value of U′ from 
 
 
This value has already been calculated above 
 
 
We can sub these values into the equation  
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This gives the temperature on the inner surface, the remaining temperatures are 
obtained by repeating the above method. 
 
 
For the next temperature we can use two layers  U′ 
 
 
 
 
Using previous values 
 
 
Hence U′ 
 
 
Put this value into  
 
 
 
 
 
The value of T2 is as expected as the pipe wall offers no resistance to heat flow 
 
Repeat this process for the remaining layers. 
 
 
 
 
 
 
 
The new value of  U′ 
 
 
 
Putting this in the equation for temperature  
 
 
 
 
 
 
This is not the only the only way to solve this problem. 
You could use Newton’s law and Fourier’s law across each layer using the calculated 
values for temperatures at each boundary. 
You could also determine the temperatures using the atmosphere as the start and work 
inwards to the fluid. 
 
 
 





























+=
′ 1

1

2

1 2

ln

2
11

πλπ
r
r

hrU f

[ ]33 100298.1106.51 −− ×+×=
′U






=′
mK
WU 83.150

U
QTT f ′

′
−=2 83.150

45.55602 −=T

C63.592 °=T





























+









+=
′ 2

2

3

1

1

2

1 2

ln

2

ln

2
11

πλπλπ
r
r

r
r

hrU f

[ ]423.0100298.1106.51 33 +×+×=
′

−−

U






=′
mK
WU 3276.2

U
QTT f ′

′
−=3 3276.2

45.55603 −=T

C17.363 °=T



South Tyneside College  Class  One Applied Heat         Module 7  Heat Transfer 
 7-23 
 

r1 

r2 
r3 

r1 = 50 mm =Internal radius 
r2 = 100 mm =Radius + insulation Thickness 
r3 = 150 mm Radius + Insulation Thickness + Insulation Thickness 

T3 

T1 

T2 

 

T1 = Inner surface temperature of pipe 

T2 = Interface temperature between pipe and insulatuion 

T3 = Outer surface temperature of insulation 
 

Example 7.4-2 
A pipe with an outside diameter of 100 mm is to be covered with two 50 mm layers 
of insulation. 
The thermal conductivity of insulation “A” is 0.1 W/mK 
The thermal conductivity of insulation “B” is 0.4 W/mK 
Calculate 
The percentage reduction in heat transfer when using the most effective layer 
combination. 
 
You may assume that the surface heat transfer coefficients remain unchanged 
regardless of the layer combination. 
 
This question highlights that fact that the combination of insulation is just as 
important as thickness. 
The arrangement is as shown 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We do not have any temperatures but this does not matter because they will be the 
same for both combinations and we have been asked to determine a percentage 
change so the temperatures should cancel out any way. 
Let subscript “AB” be insulation “A “on the inside and “B” on the outside 
Let subscript “BA” be insulation “B” on the inside and “A”on the outside 
  
                                                        Since                                    we can sub for  
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This problem has been reduced to obtaining a value for the thermal resistance.  
 
For combination “A” inside “B” outside   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For combination “B” inside and “A” outside  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We can now sub these values into our equation for percentage reduction. 
 
 
 
 
 
 
 
 
 
 
 
 
This change is a reduction in heat transfer, the combination AB allowing only 0.791 
of the temperature change to escape, while the combination BA allows 1.085 of the 
temperature drop to escape. 
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r1 

r2 
r3 

r1 = 500 mm =Internal radius 
r2 = 550 mm =Radius + Wall Thickness 
r3 = 650 mm Radius + Wall Thickness + Insulation Thickness 

Tf 

Tf = steam temperature 

Ta = ambientair temperature 
 

hf ha 

Ta 

Conduction through a layered Hollow Sphere 
 
Again if we section a hollow sphere made up of several layers it would look identical 
to the end view of a composite cylinder with the heat transfer is only in a radial 
direction.   
The treatment is identical to that for the cylinder and yields the following equation for 
U.  
 
 

 
This can be placed in the equation     and the overall heat 
transfer for the sphere can be determined. 
The heat transfer for a hemi-sphere would simply be half of this. 
 
Example 7.4-3 
A steam- steam generator produces saturated steam at 20 bar in an ambient 
temperature of 30°C. 
The shell is 50 mm thick and is covered in 100 mm of insulation. 
The centre section is in the form of a cylinder 1 m internal diameter and 3 m in 
length. 
The ends are hemispherical with a 1 m internal diameter. 
Thermal conductivity of the shell λ1 = 52 W/mk. 
Inner surface heat transfer coefficient hf = 5.2 W/m2k. 
Thermal conductivity of insulation λ2 = 0.04 W/mk. 
Outer surface heat transfer coefficient ha = 1.7 W/m2k. 
 
Ignore any heat loss through fittings and mountings. 
 
Calculate   The total rate of heat loss. 
 
This problem can be broken down into a cylinder and sphere. 
 
For the cylinder  
 

 
 
 
 
 
 
 
 

( )outerinner TTUQ −=
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If we now put some values into this equation 

 
 
 
 
 
 
 
 
 
 
 
we can put this value in the equation     but remember this is the 
heat transfer per unit length so we must multiply this value by the length of the 
cylinder. 
 
The inner temperature is the saturation temperature corresponding to the steam 
pressure which is obtained from the steam tables. 
 
 
 
 
 
 
The total heat transfer Q from the cylindrical section is 209.61 x 3 = 628.84 W. 
 
 
 
The hemispherical ends together make a sphere.   
The diagram is exactly as that for the cylindrical section, the method is also the same. 
 
 
For the sphere. 
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Heat loss from the sphere is therefore 
 
 
 
 
 
 
We must add this to the heat lost from the cylinder to obtain the total heat loss. 
 
 

Qtotal = 250.28 + 628.84 = 879.12 W 
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7.5  Heat transfer by Thermal Radiation  
 
Thermal radiation consists of only one fairly narrow band of  a spectrum of 
electromagnetic waves, which are emitted due to the agitation of molecules within a 
substance and whenever matter absorbs these waves it gains internal energy.  
The waves are similar to light waves in that they are propagated in straight lines at the 
speed of light and they require no medium for propagation.   
Radiation striking a body can be absorbed by the body, reflected from the body, or 
transmitted through the body.   
The fractions of the radiation absorbed, reflected, and transmitted are called the 
absorptivity, “α”, the reflectivity, “ρ”, and the transmissivity, “τ” , respectively.   
 
Thus    α + ρ + τ = 1  
 
For most solids and liquids encountered in engineering the amount of radiation 
transmitted through the substance is negligible and it is possible to write 

α + ρ = 1 
 
 
It is useful to define an ideal body, which absorbs all the radiation falling upon it as a 
black body.  
For a black body   α = 1 and ρ = 0.  
 
The term 'black' in this context does not necessarily imply black to the eye.   
 
A surface which is black to the eye is one which absorbs all the light incident upon it, 
but a surface can absorb all the thermal radiation incident upon it without necessarily 
absorbing all the light. 
For example, snow is almost 'black' to thermal radiation and has an absorptivity of    
α = 0.985.  
Although no totally black body exists in practice, many surfaces approximate to the 
definition. 
 

Small object emmiting thermal radiation. 

Surroundings absorbing and 
reflecting Thermal radiation 
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Thermal Radiatiobn  
Entering chamber 

Surroundings emmiting and absorbing radiation 

Black Body 

 
 
If we consider a small object radiating energy in a large space, as shown above.  
Then the energy striking the surface surrounding the body is reflected and absorbed 
many times by the surface, and the fraction of energy reflected back and absorbed by 
the body is very small.   
Therefore, as far as the object is concerned, the surroundings are approximately black 
to thermal radiation.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The closest practical approximation to a black body, would be the inside surfaces of a 
chamber inside an object lined with a material of high absorptivity such as lampblack. 
The walls of the chamber  absorb rays of thermal radiation entering the hole, so that 
only a negligible amount of radiation leaves.   
Thus the hole acts as a black body.   
 
The energy  radiated from a body per unit area per unit time, is called the emissive 

power, 
•

E .  
 
It can be shown that a black body, as well as being the best possible absorber of 
radiation, is also the best possible emitter.  
If we put a black body be placed in a space as shown, it will emit and absorb radiation 
Now if the body is at the same temperature as the space they both must emit and 
absorb the same amount of radiation 
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Let the emissive power of the black body be   
 
The rate at which energy impinges on a unit surface of the black body is also 
If we replace the black body with any other body at the same temperature, and of the 
same shape and size.   
This body must receive exactly the same amount of energy from the space as the 
black body received when it was in the same position in the space.  
However, this body is not black and hence will only absorb a fraction of the energy it 
receives, 
Rate of energy absorption   =                 where α is the absorptivity of the body. 
 
Now as before the energy absorbed must be equal to the energy emitted, therefore if 
the body has an emissive power of E, we have 
 
 
 
Since                                   hence the black body is the best possible emitter of 
radiation. 
The ratio of the emissive power of a body, to the emissive power of a black body, is 
called the emissivity, ε. 
When two bodies are at the same temperature, then the absorptivity, α equals the 
emissivity, ε.  
This is known as Kirchhoff s law, which may be stated as follows: 
The emissivity of a body radiating energy at a temperature, T, is equal to the 
absorptivity of the body when receiving energy from a source at the same 
temperature. 
 
THE GREY BODY 
The energy emitted by thermal radiation is not the same for all wavelengths of the 
radiation. 
To simplify calculations, surfaces in practice are very often assumed to have a 
constant emissivity over all wavelengths and for all temperatures.   
Such an ideal surface is called a grey body.   
Then, for a grey body, ε = α  at all temperatures, where α and ε are the total 
absorptivity and the total emissivity over all wavelengths. 
 
Stefan-Boltzmann Law 
The total energy radiated by a body is proportional to the fourth power of its absolute 
temperature. 
This was discovered experimentally by Stefan and later deduced by Boltzmann and is 
more explicitly stated thus; 
If a body of surface area A (m2 ), is at an absolute temperature T1 (K) and ε is the 
emissivity, then the quantity of heat Q (kJ/s) radiated to the surroundings at absolute 
temperature T2 (K) is given by the expression 
 
 
The constant of proportionality σSB is known as the Stefan-Boltzmann constant 

σSB = 56.7 x 10-12 kW/m2K4 
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Example7.5-1 
The temperature of the flame in a furnace is 1277°C and the temperature of its 
surroundings is 277°C.  
Calculate the maximum theoretical quantity of heat energy radiated per minute per 
square meter to the surrounding surface area.. 
 
In this case the maximum possible heat transfer due to thermal radiation is if we treat 
the furnace as a black body. 
In this case the emissivity is 1. 
The Stefan-Boltzmann constant is in kW therefore we need to multiply the equation 
by 60 to bring the answer to minutes. 
 
 
 
 
 
 
 
 
 
Example7.5-2 
An electric heater with a surface area of 0.15 m2,is in a large room with a wall 
temperature of 15°C. the emissivity of the heater is 0.8 with a temperature of 700°C.  
Calculate the heat transfer rate from heater to room. 
 
The heater may be regarded as a grey body in large surroundings which may be 
considered to be black. 
  
 
 
 
 
 
 
 
 
Example7.5-3 
 
A hot fuel pipe of 100 mm outer diameter has a surface temperature of 80°C with a 
surrounding atmospheric temperature of 15°C. Calculate the emissivity of the pipe if 
the heat lost by radiation is 10 W per metre length of pipe. 
 
 
 
 
 
 
 
 
 

( )4
2

4
1 TTAQ SB −= εσ

( ) 60550155011107.56 4
2

412 ×−×××= −Q

min
33.19 MJQ =

( )4
1

4
2 TTAQ SB −= εσ

( )4412 97328815.08.0107.56 −×××= −Q

kWQ 045.6−=

( )4
2

4
1 TTAQ SB −= εσ

( )449 2883531.0107.5610 −××××= − πε

065.0=ε
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7.6 Heat transfer in shell and tube heat exchangers 
 
One of the most important processes in engineering is the exchange of heat between 
flowing fluids.  
Practical examples in which this occurs are air intercoolers and preheaters, 
condensers and boilers in steam plant, condensers and evaporators in refrigeration 
units. 
 
There are three main types of heat exchanger:  
1. Recuperator  in which the flowing fluids exchanging heat are on either side of a 

dividing wall;  
2. Regenerator in which the hot and cold fluids pass alternately through a space 

containing a matrix of material that provides alternately a sink and a source for 
heat flow;  

3. Evaporative in which a liquid is cooled evaporatively and continuously in the 
same space as is the coolant as in a cooling tower.  

 
We are only going examine the recuperator type and more specifically ones in which 
the flow of the two fluids are on the same axis. 
In this case the two fluids may flow in the same or opposite directions giving rise to 
the names  parallel and counter flow.   
This in-line heat exchanger may consist simply of two concentric tubes, one fluid 
flowing in the inner tube and the other in the annulus or there may be a number of 
tubes within a large tube or shell and to increase heat transfer the shell fluid is made 
to flow partly across the tubes by means of baffles. 
  
The mechanisms involved are therefore convection to or from the solid surface and 
conduction through the wall.   
The wall may be corrugated or finned to increase turbulence and the heat transfer 
area, this analysis can very complex, however at this level we will only be dealing 
with overall heat transfer coefficients. 
 
Most of the basic conduction and convection theory is applied in this heat exchanger, 
however the temperature of each fluid changes as it passes through the exchanger, 
and consequently the temperature of the dividing wall between the fluids also changes 
along its length.   
This means that our previous equation ( )outerinner TTUQ −=  must be modified since 
the temperatures previously where fixed but now they are continuely changing. 
 
So which one do we use? Inlet, outlet, some average value? 
 
What we actually use is a value called the  
     
   LOGARITHMIC MEAN TEMPERATURE DIFFERENCE (LMTD) 
 
We shall use an equation to obtain the LMTD over the next few pages but first we 
must look at the various configurations of this type of heat excahnger. 
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Counter Flow 

th1 

th1 

th2 

tc2 
tc1 

th2 

th1 

th1 
th2 

tc2 

th2 

tc1 

Parallel Flow 

The diagrams below show what we mean by parallel flow where both fluids travel in 
the same direction, and counter flow where the fluids travel in opposite directions. 
The diagrams are of a concentric tube heat exchanger, the hot fluid is in the annulus 
and the cold fluid in the centre tube. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Definitions 
The temperature variations of the fluids in parallel and counter flow are shown below. 
Temperatures are plotted against length or area of the heat exchanger surface.   
The inlet end, where length or area is zero is at the hot fluid inlet. 

•  th1 is the inlet temperature of the hot fluid 
•  th2 is the outlet temperature of the hot fluid 
•  tc1 is the inlet temperature of the cold fluid 
•  tc2 is the outlet temperature of the cold fluid 
•  θi is the temperature difference between the fluids at the inlet end of the heat 

exchanger 
•  θo is the temperature difference between fluids at the outlet end of the heat 

exchanger 
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Length of heat exchanger 

Inlet end 
Outlet end th1  

tc1  

th2  

tc2  
θi θo 

Parallel Flow 

Hot Fluid 

Cold fluid 

Length of heat exchanger 

Inlet end 
Outlet end th1  

tc2  
th2  

tc1  

θi 

θo 

Counter  Flow 
temperatures diverging at inlet end 

Hot Fluid 

Cold fluid 

Length of heat exchanger 

Inlet end 
Outlet end th1  

tc2  th2  

tc1  

θi 

θo 

Counter  Flow 
temperatures converging at inlet end 

Hot Fluid 

Cold fluid 

Heat exchanger configurations showing variation in temperatures of the hot and 
cold fluid  
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Length of heat exchanger 

Inlet end 
Outlet end 

th1  

tc1  

th2  
tc2  θi 

θo 

Hot Fluid 

Cold fluid 

Hot fluid Condensing 

Length of heat exchanger 

Inlet end Outlet end 

th1  

tc1  

th2  

tc2  

θi 

θo Cold fluid boiling 

Hot Fluid 

Cold fluid 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CHANGE OF PHASE  
Temperature distributions with a change of phase are also shown above.  
Only the phase change takes place in the exchanger, so the temperature of the boiling 
or condensing fluid does not change.   
The temperature distributions are the same for both parallel and counter flow.   
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EFFECTIVENESS   εεεε 
 
Effectiveness is the ratio of energy actually transferred to the maximum theoretically 
possible.   
The definition depends on the relative thermal capacities of the streams that is the  
mass x specific heat capacity, for the hot fluid this is mhcph and for the cold fluid 
mccpc 
 
In parallel flow tc2 will approach th2 for an infinitely long heat exchanger, but can 
never exceed th2.   
In counter flow it is quite normal for tc2 to exceed th2 and, consequently, the counter 
flow exchanger is the more 'effective'.   
 
The maximum theoretical transfer will take place in counter flow in an exchanger of 
infinite length and, in such a case, 
 
tc2 →  th1 when mhcph> mccpc and th2 →  tc1 when mccpc > mhcph  
 
Thus the maximum transfer is (mcp)min(th1 – tc1)  and in the two cases are: 
 
     mccpc(th1 – tc1)  when mhcph> mccpc   
and    
     mhcph(th1 – tc1)  when mccpc> mhcph 
 
The actual transfers in the two cases are, mccpc(tc2 – tc1) and mhcph(th1 – th2) hence 
εεεε, the effectiveness, becomes 

    
11

12

ch

cc

tt
tt

−
−

=ε  when mhcph> mccpc   

    
11

21

ch

hh

tt
tt

−
−=ε when mccpc> mhcph   

These definitions may be used in either counter or parallel flow, but the value of εεεε 
will be lower in parallel flow. 
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Determination of Heat Exchanger Performance 
 
The primary purpose of a heat exchanger is to achieve the required transfer rate using 
the smallest possible transfer area and fluid pressure drop.  A large exchanger can 
mean unnecessary capital outlay and high pressure drop means a reduced efficiency 
of the plant considered overall.   
Generally, a smaller exchanger can be produced by, finning surfaces to increase the 
overall heat transfer coefficient.  However, this leads to a higher fluid pressure drop, 
and the best design is often a compromise between the conflicting requirements, in 
fact, a number of different designs for a given duty may be acceptable. 
 
The heat transfer requirement, Q, can be expressed in several ways: 
   MA AUQ θ=   
   ML LUQ θ=  
   ( )12 ccpcc ttcmQ −=   

   ( )21 hhphh ttcmQ −=  
 
θm is a mean temperature difference between the fluids, and UA and UL are mean 
coefficients, in W/m2K and W/mK respectively  applicable over the entire area “A” or 
length “L “of the exchanger and are determined in the usual way shown previously.   
 
 
Counter and Parallel Flow  Log Mean Temperature Difference 
(LMTD) 
 
If the mass flow rates and inlet and outlet temperatures are known, the heat transfer 
will be known from ( )12 ccpcc ttcmQ −=  or ( )21 hhphh ttcmQ −=   

but further details of the exchanger cannot be specified until θm is known.  
 
The derivation of θm can be found in any standard text on heat transfer. 
The result and how to use it is all that concerns us here. 
The required logarithmic mean temperature difference is .   
       
 
 

      

i

o

i
m

Ln
θ
θ
θθθ −= 0

  

 
 
 
It is the same for counter and parallel flow, though θo and θi in terms of values of th 
and tc are different  
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waterair QQ =

( )( ) ( ) ( )1221 ccwaterpwaterhhairpair ttcmttcm −×=−×

11

21

ch

hh

tt
ttratiothermal

−
−=

6130
13088.0 2

−
−= ht

( )613088.01302 −−=ht

C88.202 °=ht

Example 7.6-1 
Water passes through the core of a 4 m long concentric tube heat exchanger in the 
opposite direction to air flowing in the annular space. 
The core diameter is 30 mm while that of the outer shell is 80 mm.  
The wall thickness of both tubes is 5 mm. 
The air enters with a velocity of 30 m/s and temperature of 130°C. 
The water enters with a velocity of 0.75 m/s and temperature of  6°C. 
The heat exchanger has a thermal ratio of 0.88. 
For air      cp = 1.012 kJ/kgK, density 1.009 kg/m3  

For water cp = 4.19 kJ/kgK, density 1025 kg/m3  
 
Calculate 

a) The outlet temperature of the air and water. 
b) The overall heat transfer coefficient per unit length between the 

fluids. 
 
In this example we know the heat lost by the air has been gained by the water 
 
 
 
 
 
The mass can easily be determined using volume and density but in this case we do 
not have all the temperatures. 
However we do have the thermal ratio which is akin to the effectiveness in that it is 
the ratio of the actual heat transferred to the maximum possible. 
Since the minimum mcp is that for the air then this becomes the ratio of the air 
temperature change and the maximum temperature change that is possible. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This gives us the temperature of the air leaving the cooler, if we calculate the mass 
flow of air and water we can obtain the water exit temperature. 
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80 mm 
70 mm 

30 mm 
40 mm 

( ) 009.130
4

04.007.0 22

××−= π
airm�

( ) ρπ
××

−
= cddm innerouter

air 4

22

�

s
kgmair 07845.0=�

102575.0
4
03.0 2

××= π
waterm�

s
kgmwater 5434.0=�

( ) ( ) ( ) ( )1221 ccwaterpwaterhhairpair ttcmttcm −×=−×

( ) ( )619.45434.088.20130012.107845.0 2 −×=−× ct

( )68.3 2 −= ct

C8.92 °=ct

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Mass flow rate of air = annular area x air velocity x density 

 
 
 
 
 
 

 
 
 
 
 
Mass flow rate of water =  area of core x water velocity x density 

 
 
 
 
 
 
 
 
The water outlet temperature can now be calculated from  
 
 
 
 
 
 
 
 
 
 
 

This is the section of the cooler, the air passes 
through the annulus and the water through the 
core. 
We must take the wall thickness of the tube into 
account when calculating the flow areas. 
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Inlet end 
Outlet end th1  

tc2  
th2  

tc1  

θi 

θo 

Counter  Flow 
 

Hot Fluid 

Cold fluid 

i

o

i
m

Ln
θ
θ
θθθ −= 0

21 chi tt −=θ 8.9130 −=iθ

12 cho tt −=θ

Ki 2.120=θ

688.20 −=oθ Ko 88.14=θ

2.120
88.14

2.12088.14

Ln
m

−=θ

Km 413.50=θ

L
M

U
L

Q =
θ LU=

× 413.504
8663

( ) ( )21 hhairpair ttcmQ −×=

( )88.20130012.107845.0 −×=Q
kWQ 663.8=

mK
WU L 9.42=

Now we have both temperatures for both fluids we can look at obtaining the overall 
heat transfer coefficient for the cooler from ML LUQ θ=  
 For this equation we need to calculate the θM which is the log mean temperature 
difference. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We also need to calculate the rate of heat transfer. 
 
 
 
 
 
 
 
 We can find the overall heat transfer coefficient  UL  from 
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( ) ( ) ( )( )1221 ccwaterpwaterhhgaspgas ttcmttcm −×=−×

power brake engine
fuel of flow massbsfc =

fuel of flow mass
air of flow ratio fuel / massAir =

power brake x bsfc x ratio fuel air of flow mass air=

600 x 0.25 x 25air of flow mass =

hour
kg 3750 air of flow mass =

fuel of flow mass air  of flow mass gas of flow mass +=

150 3750 gas of flow mass +=

hour
kg 3900 gas of flow mass =

Example 7.6-2  
A multi tubular single pass heat exchanger is used as a waste heat recovery unit in a 
diesel generator exhaust system. 
The diesel engine develops 600 kW with a  bsfc of 0.25 kg/kWhour at an air fuel ratio 
of 25:1. 
The gas passes through 30 mm diameter tubes at a velocity of 12 m/s and pressure of 
1.2 bar. 
The gas inlet temperature is 360°C and the outlet temperature is 180°C. 
Water enters the shell at 15°C and leaves at 90°C. 
The theoretical overall heat transfer coefficient for the heat exchanger was estimated 
as  
50 W/m2K, however a fouling allowance of 0.6 m2K/kW must be assumed to allow 
for in-service conditions. 
For the gas       cp = 1.11 kJ/kgK,  R=0.29 kJ/kgK  

For water   cp = 4.19 kJ/kgK,   
Calculate  

a) The mass flow rate of water 
b) The number of tubes required 
c) The length of tube for a Parallel flow arrangement 
d) The length of tube for a Contra flow arrangement. 

 
This is a typical example where we must look at two aspects. 
To obtain the mass flow of water we need to know the heat taken from the gas. 
The number of tubes must allow the mass flow rate of the gas to pass through them so 
we need the volume flow rate of the gas. 
The tube length is obtained from the surface area of the cooling tubes which in turn is 
obtained using the LMTD. 
 
The mass flow of water is obtained from 

 
 
 
The mass of gas comes from the fuel consumption and the air fuel ratio. 
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( ) ( ) ( )( )1221 ccwaterpwaterhhgaspgas ttcmttcm −×=−×

( ) ( )159019.418036011.1
3600
3900 −×=−× waterm

second
kg 0.6887  waterof flow mass =

hour
tonne 2.479  waterof flow mass =

P
mRT gas of volume =mRT PV =

5101.23600
6332903900 gas of volume

××
××=

second
m 1.657  gas of volume

3

=

12
657.1

 velocitygas
flow volume flow gas of area ==

20.1381m flow gas of area =

 tubesofnumber   tubeone of area gas of area ×=

203.0
1381.04

tubeofarea
gas of area  tubesofnumber 

×
×==

π

196  tubesofnumber =

MA AUQ θ=

1000
6.0

50
11 +=

AU

Km
WU A 254.48=

using the equation 
 
 
 
 
 
 
 
 
 
 
The number of tubes is obtained from the area required to pass the mass flow of gas 
divided by the area of one tube. 
 
From 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The length of each tube is obtained from the total surface area required to exchange 
all the heat. 
The surface area is obtained from 
 
The value for U can be obtained from the information given 
 
 

 
 
 
 
This is the same for parallel and contra flow configurations as is the heat flow, 
however the temperature difference will change so this must be calculated for both 
arrangements. 
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Length of heat exchanger 

Inlet end 
Outlet end th1  

tc1  

th2  

tc2  
θi θo 

Parallel Flow 

Hot Fluid 

Cold fluid 

Ko 9090180 =−=θ

11 chi tt −=θ

K
Ln

m 76.189
3437.1
255

345
90
34590 =

−
−=−=θ

22 cho tt −=θ

Ki 34515360 =−=θ

i

o

i
m

Ln
θ
θ
θθθ −= 0

2498.23
76.18954.48

216450required  tubesof area surface m
U

Q
mA

=
×

==
θ

 tubesofnumber  length    tubeof ncecircumfere available  tubesof area surface ××=

available area surface required  tubesof area surface =

196 length  03.0498.23 ×××=π

m 1.272  tubeoflength =

Parallel Flow  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This is the length of tube required for the parallel flow. 
 
The length required for contra flow is obtained in exactly the same way in fact the 
only change is to the temperature difference obtained for the LMTD.  
 
You should attempt this yourself  the value for the LMTD should be 213.2K 
 
This gives a required surface area of 20.92m2 and a length of 1.132m. 
 
This highlights the fact that a contra-flow heat exchanger is more effective. 


