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Gas Processes in a Closed System 
Many real processes are carried out in a piston-cylinder arrangement. Forecasting the 
behaviour of the working fluid is not simple due to the complex processes taking 
place. 
However, by assuming that the working fluid behaves like a perfect gas and that the 
processes are reversible results can be obtained which are sufficiently accurate for 
many engineering purposes. 
 
The Gas Laws 
 
Boyle’s law 
This states that when a given mass of gas is kept at constant temperature its volume 
varies inversely as the absolute pressure. 

  
P
1V ∝    or   ttanconspV =  

Charles’ Law 
This states that when a given mass of gas is kept at constant pressure its volume 
varies directly as its absolute temperature. 

  TV ∝    or   ttancons
T
V =  

 
The Characteristic Equation of State 
Consider a volume of gas V1 at a pressure p1 and temperature T1 which undergoes the 
following process. 
 
1) Expansion to some other volume V while the temperature remains constant at T1. 
 

From Boyle’s  law 
V
Vpp 11

2 =     call this equation 1 

  
2) Heating at constant pressure from volume V to a new volume and temperature of  
     V2 and T2 

From Charles’ law   
2

12

T
TVV =   call this equation 2 

 
If we substitute the value for Volume V from equation 2 into equation 1 we get 
 

    Constant 
T
Vp

T
Vp

1

11

2

22 ==  

since the mass remains constant then we can say    Constant mass 
T

pV ×=  

The constant in this equation is called the gas constant and is identified as R with 
units of Joules per kilogram Kelvin, note that each perfect gas has its own gas 
constant the equation is usually written as pV=mRT with the pressure temperature 
and volume all at the same state point. 
pV=mRT  is called the characteristic equation of state.
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Universal Gas Constant   Ro 
The gas constant R defined above is unique to each gas, however a universal gas 
constant can be derived by modifying the form of the characteristic equation of state 
using Avogadro’s hypothesis and a unit of molecular mass called the kilogram-mole 
in the following manner. 
 
Molar mass 
The word mole comes from a Latin word meaning heap or pile, so a mole is a pile of 
atoms or molecules, it has no units it is just an amount of matter. 
Each element of substance has its own relative atomic mass, this is the average mass 
of its isotopes compared with the mass of a standard atom of carbon. 
The molar mass of a substance is the mass of a mole of the substance and is its 
relative atomic or relative molecular mass. 
For example, one molecule of Oxygen “O” contains 2 atoms written O2, each atom 
has a relative atomic mass of 16 hence the relative molecular mass of Oxygen is  
2 x 16 = 32 as this is a relative mass we can substitute whatever units we find 
convenient. 
Most standard chemistry texts would consider 1 mole of substance having a mass 
measured in grams, this is too small for our purposes therefore we would consider a 
larger amount of substance the Kmole which has a mass measured in kilograms, so 
one Kmol of Oxygen has a mass of 32 kg. 
 
The mass of a substance can therefore be defined as the number of molecules of 
substance times the mass of one molecule. 
The molecular mass is given the symbol M with units of kg/Kmol 
 
For n molecules of  substance      mass (kg) = n (Kmol) x M (kg/Kmol) 
 
 
The characteristic equation TRmVp ××=×  can be written as TRnMVp ××=×  
 
Avogadro's law  
This states that equal volumes of all gases under the same conditions of temperature 
and pressure contain the same number of molecules. 
 
Consider two gases A and B occupying equal volumes at the same pressure and 
temperature 
 
 
 
 
 
 
 
 
 
According to Avogadro if there are n molecules of gas A there will be n molecules of 
gas B. 

Gas A 
n  Kmol 
MA kg/Kmol 
RA kJ/kgK 
Pressure p N/m2 

Volume V m3 
Temperature T K 

Gas B 
n  Kmol 
MB kg/Kmol 
RB kJ/kgK 
Pressure p N/m2 

Volume V m3 
Temperature T K 
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For gas A   TRnMVp AA ××=×    and for gas B   TRnMVp BB ××=×  
 

Therefore AA RM
nT
pV ×=  and BB RM

nT
pV ×=  

 

From Avogadro, the quantity 
nT
pV  is a constant for all gases and is referred to as the 

universal gas constant and given the symbol Ro 
 
Therefore RMRo ×=  
   
Experiments have shown that 1 mol of any perfect gas at 1 bar and 0°C  is around 
22.71 m3, if we use this in the above equations a numerical value for Ro can be 
obtained; 
 

molK
J 1.8314

15.2731
71.22101 5

=
×

××==
nT
pVRo   

 
The units for R0 have been given as J/mol K, since the molecular mass is a relative 
mass the units of J/kmol K could also have been used in this case the molecular mass 
would be in kg/Kmol. 
The characteristic constant for oxygen with a relative molecular mass of 32 is given 
by 

  

RMRo ×=    
kgK

J 8.259
32

1.8314 ===
M
R

R o  

 
The volume of one mol of gas at standard temperatures and pressures (STP) will also 
be the same  for all gasses at the same temperature and pressure, it is found to be 
22.41 m3.  
 

3
5 m 41.22

1001325.1
15.2731.83141 =

×
××=

××
=

p
TRn

V o  

 
Specific Heats of Ideal Gasses 
The basic definition of specific heat capacity is:  
 
The amount of energy (Heat Transfer) that must be added to a particular mass to raise 
its temperature through one degree. 
     Q = m c T 
Heat transfer describes a particular method or path of energy transfer and is not a 
property. 
The amount of heat transfer required to change a property from one value to another 
depends on the path followed, so if the path is known then the heat required depends 
only on the working substance the specific heat is then a property of the fluid. 
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In the analysis of gas cycles two particular processes are of interest constant pressure 
and constant volume. 
Specific heat at constant volume  
To develop this further we must introduce Joules law which investigates the internal 
energy of a gas. 
 
Joules Law 
The internal of a fluid is due to the movement of molecules within the substance of a 
system and as such is a function of temperature, Joule used the apparatus below to 
investigate this. 
When the system was in thermal equilibrium, the valve was opened and the 
pressurised air flowed into the vacuum, careful measurements showed that the 
temperature did not change.  Since there had been no work transfer and the tank was 
insulated to prevent heat transfer then from the non flow energy equation the internal 
energy had not changed thus Joule reasoned that since the pressure and volume had 
changed and the temperature had not, the internal energy of a given mass of gas was 
only dependant on temperature. 

Pressurised 
Air 

Vacuum 

Insulated water bath 

 
From the first law and non flow energy equation  Q = W + U  
Therefore If Q=0 and W=0 then U =0 
  
Consider a constant volume process in which m kg of gas is heated from temperature 
T1 to T2 
In a constant volume process there is no work transfer therefore Q=U 
 
  ( ) UTTcmQ v =−××= 12  
 
The change of internal energy is always given by m x cv x (T2 – T1) regardless of the 
process between the two points however only in a constant volume process does the 
heat transfer equal the change of internal energy. 
 
Specific heat at constant pressure 
 
From the definition of specific heat  ( )12 TTcmQ p −××=  
Where cp is the specific heat capacity at constant pressure. 
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Relationship between the specific heats 
Consider a closed system in which m kg of gas is receiving heat and expanding so the 
pressure remains constant. 
Applying the NFEE  ( )12 UUWQ −+=  
Where   ( )12 TTcmQ p −××=    
    ( ) ( )1212 TTcmUU v −××=−  
    ( ) ( )1212 TTRmVVpW −××=−=  
 
Substituting the above expressions gives 
   ( ) ( ) ( )121212 TTRmTTcmTTcm vp −××+−××=−××  

     Rcc vp +=  
 
Ratio of specific heats  
The ratio of the two specific heats cp / cv is usually denoted by symbol γ, 

Ratio of specific heats    γ=
v

p

c
c

    therefore  vp cc γ=  if we substitute this 

relationship in   Rcc Vp =−      

We can obtain the following relationships    
1−

=
γ

Rcv  and 
1−

=
γ
γRc p  

 
These relationships are true for both real and perfect gases. 
For perfect gases γ is a constant, since both cp and cv are constants. 
For real gases γ is a property, and hence its value depends on the state point.   
Since both cp and cv increase with temperature and the difference between them (R) 
remains constant, γ tends to decrease as the temperature increases.  
Since the specific heats are positive and cp > cv,  γ is positive, and greater than one. 
For Monatomic gasses such as Argon (A)     γ is about 1.6 
For Diatomic gasses such as oxygen (O2) and Nitrogen (N2)   γ is about 1.4 
For Triatomic gasses such as Carbon Dioxide (CO2)    γ is about 
1.3 
 
 
Enthalpy of a gas 
Enthalpy is defined as the sum of internal energy and flow energy   H = U + pV  
    TRmTcmH v ××+××=  
    ( )RcTmH v +×=  

but Rcc vp +=   

Therefore    TcmH p ××=  
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 REVERSIBILITY 
 
When a system changes state in such a way that the state point at any instant can be 
located on a process diagram, then the process is considered to be reversible.   
A reversible process between any two states can therefore be drawn as a solid line on 
a property diagram.  
This can be summarised in the following statement. 
If a fluid is subject to a reversible process, both the fluid and its surroundings can 
always be returned to their original state. 
 
In real processes, the intermediate states of the fluid cannot be determined thus a 
continuous path cannot be traced on a property diagram.  
These real processes are called irreversible and are drawn on a property diagram as a 
dotted line between the end states to indicate that the intermediate states cannot be 
determined. 
To allow us to consider a reversible process several criteria must met. 
 
(a) The process must be frictionless.   

The fluid itself must have no internal friction and there must be no mechanical 
friction (e.g. between cylinder and piston). 

(b) The difference in pressure between the fluid and its surroundings during the 
process must be infinitely small.   
This means that the process must take place infinitely slowly, since the force 
to accelerate the boundaries of the system is infinitely small. 

(c) The difference in temperature between the fluid and its surroundings during 
the process must be infinitely small.   
This means that the heat supplied or rejected to or from the fluid must be 
transferred infinitely slowly. 

 
The above criteria show that in practice no process is truly reversible.   
However, they all consider the fluid and the surroundings so if we draw the system 
boundary inside the surroundings we can concentrate on the fluid itself and introduce 
the concept of  internal reversibility.  
 In an internally reversible process, the surroundings are ignored and can never be 
restored to their original state, but the fluid itself is always in an equilibrium state and 
the process path can be retraced to the initial state.  
 
In general,  
Non flow processes such as those occurring in cylinders with a reciprocating piston 
are assumed to be internally reversible. 
Flow processes such as those occurring in rotary machinery (e.g. turbines) are known 
to be irreversible due to the high degree of turbulence and scrubbing of the fluid 
 
 
 
 



South Tyneside College  Class  One Applied Heat         Module 2  Thermodynamic processes 
 2-7 
 

Fluid Pressure 

Closed Fixed Mass System 

Piston 

Work Energy 

Fluid Pressure 

 
 
 
REVERSIBLE WORK 
We should be able to recall from earlier studies that work is obtained when a force 
acts over a particular distance and that force is the product of pressure and area. 
 
 
 
 
If we consider a piston in a cylinder as shown above then the work done by the fluid 
is 
Force times distance. 
 
 stroke oflength   areaPiston  Pressure Fluid Fluidby  DoneWork ××=  
 
Area times length is a volume therefore the work done can be written as pressure 
times volume, since the pressure and volume are continuously changing during the 
cycle and our equations only allow us to obtain particular points we must calculate the 
pressure for small changes in volume and determine the respective small change in 
work transfer we can then sum all these small changes. 
These changes in pressure and volume can be plotted on a p-V diagram the area of 
which is given by the product of p and V.   
Hence the area of a p-V diagram represents work transfer and is the summation of the 
element strips p x dV shown in the diagram below. 

This is written mathematically as ∫=
2

1
pdv Fluidby  DoneWork  

1 

2 

V1 

P2 

P1 

Volume 

P 
r 
e 
s 
s 
u 
r 
e 

V2 dV 

P 

 
 
This is only true if the available force has not been used to accelerate the boundary or  
to overcome friction. 
In other words it is assumed that reversibility criteria “a” and “b” apply. 
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Reversible Non-Flow Processes 
 
Constant Volume or Isochoric Process 
In this process the working substance is held in a rigid container such as an air bottle. 
Since the shell or boundary of this bottle is fixed then the only  work transfer that can 
take place is a work input due to the fluid being stirred such as running a centrifugal 
pump with the discharge valve shut, since this should be avoided and is of no real use 
in the context of  thermodynamic cycles, it is usually assumed that constant volume 
means no work transfer. 
This can be reinforced by the p/V diagram shown below which has no area. 
 
Applying the NFEE 
 

( )12 UUWQ −+=            W=0 
 

( )12 UUQ −=  
 

( )12 TTcmQ v −××=  
 
Thus all the heat supplied in a constant 
volume process goes to increasing the internal 
energy of the fluid. 
 
Constant Pressure or Isobaric Process 
In the constant volume process when heat is applied the pressure rises, so to maintain 
the pressure constant the boundary must move against an external resistance. 
From the previous definition of work 
 

∫=
2

1
pdv Fluidby  DoneWork   

 
( )12Vp Fluidby  DoneWork V−=  

 
Apply the NFEE 
 

( )12 UUWQ −+=  
 

( ) ( )1212 UUVVpQ −+−=  
( ) ( )1122 pVUpVUQ +−+=      But pVUH +=  

 
 
  [ ]1212 TTcmHHQ p −××=−=  
 
 
 
 

1 

2 

V1 = V2 

P1 

P2 

Volume 

P 
r 
e 
s 
s 
u 
r 
e 

Constant  Volume  
Process 

1 2 

V1  

P1 = P2 

Volume 

P 
r 
e 
s 
s 
u 
r 
e 

Constant  Pressure  
Process 

V2  
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Constant Temperature or Isothermal Process 
When a fluid expands from a high pressure to low pressure in a closed system there is 
a tendency for the temperature to fall, therefore to keep this constant, heat must be 
continuously added. 
Similarly in an isothermal compression heat must be continuously removed 
 
From the characteristic equation 

TRmVp ××=×  
 
If the temperature is constant then 
 

tconsVpVp tan2211 =×=×  
 
 
 

∫=
2

1
pdv Fluidby  DoneWork  

 

but 
V

tConsp tan=  

 
substituting this value in the work equation gives 

( )
1

22

1
tantan

v
dvconstant Fluidby  DoneWork 

2

1 v
vLntconsLnvtcons

v

v
×=== ∫  

 
The constant is pV and can be at either state point 1 or state point 2 hence the work 
transfer is 
  

1

2
11 v

v
LnVFluidby  DoneWork p=  

 
This can be modified by substituting pressure for volume and mRT for pV to give 
 

   
2

1
11 p

p
LnVW p=  or  

2

1
1 p

p
LnTW mR=   or  

1

2
1 v

v
LnTW mR=  

 
 
Since  ( )1212 TTcmUU v −××=−  and there is no change in temperature then there is 
no change in internal energy and the heat flow is the same as the work flow. 
 

Q=W 
 
It should be remembered that this only applies to a perfect gas 
 
 
 

1 

2 

V1  

P2  

Volume 

P 
r 
e 
s 
s 
u 
r 
e 

Constant  Temperature  
Process 

V2  

P1  

PV = Constant 
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Reversible Adiabatic Process 
In an adiabatic process no heat is transferred to or from the fluid, a sudden expansion 
or compression of a gas is initially adiabatic because there is no time for the heat to 
enter or leave the gas.  
 

If  Q = 0   then  W = (U2 – U1) 
 
while such a process can be reversible or irreversible, only the reversible process will 
be considered here. 
When the property of Entropy is introduced later it will be shown that in a reversible 
adiabatic process the entropy remains constant, hence such a process is termed an 
Isentropic process. 
For a perfect gas the law controlling the relationship between the pressure and volume 
for an adiabatic process can be derived from the NFEE as follows  
 
For a reversible adiabatic process Q = 0 from the first law Q = W + (U2 – U1 ) 
 
Therefore                                        now                               and 
 
the equation becomes                                              to eliminate 
 
Consider a unit mass of gas, the characteristic equation is pV = RT 
 
Since both pressure and volume may change the characteristic equation  
 
becomes 
 
Then                                                            substitute in the NFEE 
 
                                                                           

                 
 
 
or                                                           
 
now 
 
therefore                                                                           
 
 
hence  
 
or                                          
 
 
but 
 
Therfore       

WUQ δδδ += VpW δδ = TcU vδδ =

VpTcv δδ +=0

TRpVVp δδδ =+

Tδ

R
pVVpT δδδ +=

Vp
R

pVVpcv δδδ ++=0

( ) VRppVVpcv δδδ ++=0

vp ccR −=

( ) ( ) VpccpVVpc vpv δδδ −++=0

VpcpVc pv δδ +=0

Vp
c
c

pV
v

p δδ +=0

v

p

c
c

=γ

VppV δγδ +=0
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so                                                      
 
 
integrating gives 
     
 
 
Which gives                                                          where A is a constant 
 
 
Therefore                              but                            is a constant               
 
 
Therefore 
 
This then is the law of a reversible adiabatic process, do not worry about the maths as 
you would not be required to show this proof.  
 
The heat flow for this process is obtained from the NFEE while the work is obtained 
from the area under the pV diagram. 
 
 
 

( )12 UUWQ −+=  
 
 

∫=
2

1
pdv Fluidby  DoneWork  

         
   γV

constantp =  

∫=
2

1 V
dvtan Fluidby  DoneWork γtcons  

 
2

1

2

1 1V
dvconstant Fluidby  DoneWork 

1v

v

v

v

Vc 








−
==

−

∫ γ

γ

γ  

 

[ ]γγ

γ
−− −= 1

1
1

2-1
c Fluidby  DoneWork VV    now    γγ

2211p c VpV ==  

 
and  11

1
111p VpVV =× −γγ    and  22

1
222p VpVV =× −γγ  

 

therefore ( )
1

p
 p

1
1Fluidby  DoneWork 2211

1122 −
−

=−
−

=
γγ

VpVVpV  

 

V
V

p
p δγδ +=0

∫∫ +=
V
dV

p
dp γ0

AVp ee =+ loglog γ

AepV =γ Ae

tconspV tan=γ

1 

2 

V1  

P2  

Volume 

P 
r 
e 
s 
s 
u 
r 
e 

Reversible  Adiabatic  
Process 

V2  

P1  

pVγ=Constant 
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Polytropic Processes 
It has been found that in practice many processes follow the law pVn= constant, where 
“n” is a constant which describes the curve of the pv diagram. 
In a polytropic process the index “n” depends only on the heat and work quantities 
during the process and consequently there could be an infinate number of values for 
this index.  
The four processes already examined are considered special cases of the polytropic 
process for a perfect gas. 
For the general case when the polytropic  
index is “n” the diagram is the same  
as for the adiabatic process and since the 
 pV relationship is identical  
the equation for work is identical 

∫=
2

1
pdv Fluidby  DoneWork  

 

∫=
2

1 V
dvtan Fluidby  DoneWork ntcons  

 

( )
1

p p
1

1Fluidby  DoneWork 2211
1122 −

−=−
−

=
n

VpVVpV
n

 

The heat flow can be obtained from the NFEE,  
   ( )12 UUWQ −+=  

( )
11

p W 212211

−
−=

−
−=

n
TTmR

n
VpV   ( )1212 TTcmUU v −××=−  

 
 

( ) ( )12
21

1
Q TTmc

n
TTmR

v −+
−
−=    Therefore   

( ) ( )21
21

1
Q TTmc

n
TTmR

v −−
−
−=  

 

If we substitute
1−

=
γ

Rcv
       we get     ( ) ( )

11
Q 2121

−
−−

−
−=

γ
TTmR

n
TTmR  

 

( ) 








−
−

−
−=

1
1

1
1Q 21 γn

TTmR  This gives

 ( ) ( ) ( )
( )( ) 









−−
−−−−=
11
11Q 21 n

nTTmR
γ

γ  

 

( ) ( )( )







−−
−−=

11
Q 21 n

nTTmR
γ

γ       This gives 
( )
( ) ( )







−
−










−
−

=
11

Q 21

γ
γ n

n
TTmR  

 

  ( ) Work
1

Q ×








−
−=

γ
γ n  

1 

2 

V1  

P2  

Volume 

P 
r 
e 
s 
s 
u 
r 
e 

Reversible  Polytropic  
Process 

V2  

P1  

pVn=Constant 
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You should be aware that in most questions on non flow polytropic processes the 
adiabatic index γ will be unknown, therefore the heat can be calculated using the 
NFEE. 
 
The Polytropic Index “n” 
Since the index “n” describes the expansion or compression process, then it would be 
reasonable to assume that its value could be obtained from the pV diagram. 
If the pV diagram is plotted on a log scale the result would be a straight line if the 
curve was of the form pVn= constant. 
 
 c=npV   Take logs  clognlogVlogp =+  
 
 cVn logloglogp +−=  
this is of the form cmx +=y  hence we have a straight line slope of -n 
 
 
 

 
 
 

 
 

 
 
 
The index could also be derived in a similar manner if two values of pressure and 
volume were known. 

nVp 22
n

11Vp =  
n

V
V









=

1

2

2

1

p
p  








=

1

2

1

2

2

1 log
p
p

log
V
V

V
Vn  

  n

V
V
p
p

=

1

2

2

1

log

log
 

 
 
 
 
 
 
 
 
 
 

1 

2 

Log Volume 

L 
o 
g 
 

P 
r 
e 
s 
s 
u 
r 
e 

Slope = tanθ = n 
 

θ 
 

1 

2 

V1  

P2  

Volume 

P 
r 
e 
s 
s 
u 
r 
e 

Reversible  Polytropic  
Process 

V2  

P1  

pVn=Constant 
 

Pn  

Vn 
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Other useful relationships 

 We have seen that  constant p =nV  and that  Constant =
T
Vp

,we can now 

combine these relationships to form further relationships which you must be able to 
recall and use at will. 

 From  
1

11

2

22

T
Vp

T
Vp

=    
11

22

1

2

Vp
Vp

T
T

=  

 

From γγ
2211p VpV =  we obtain  

n

V
V

p
p









=

2

1

1

2  we can use this to eliminate 

pressures in the above equation to give   















=

1

2

2

1

1

2

V
V

V
V

T
T

n

  

rearranging gives    
1

2

1

2

1

1

2
−

















=

V
V

V
V

T
T

n

 

Hence    
1

2

1

1

2
−









=

n

V
V

T
T  

 
We can now do the same thing to eliminate  volumes 

γγ
2211p VpV =   gives  

n

p
p

V
V

1

2

1

1

2








=    rearranging gives  

n

p
p

V
V

1

1

2

1

2
−









=  

 

substitute this into 
11

22

1

2

Vp
Vp

T
T

=  gives  
n

p
p

p
p

T
T

1

1

2

1

2

1

2
−

















=  

 

multiplying out gives    
n

n

p
p

T
T

1

1

2

1

2

−









=  

 

these can be combined to give  

1

2

1

1

1

2

1

2

−
−









=








=

n
n

n

V
V

p
p

T
T

 

 
 
This equation is very useful and should be remembered 



South Tyneside College  Class  One Applied Heat         Module 2  Thermodynamic processes 
 2-15 
 

Since “γ” is a particular value of “n” Then the equation becomes

 

1

2

1

1

1

2

1

2

−−









=








=

γ
γ

γ

V
V

p
p

T
T
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 Process Summary 
Constant pressure process 
When n = 0 Pv0 = constant,    i.e. p = constant  
 
Constant volume process 
When n = ∞,   pv∞ = constant or   p1/∞ v = constant,   i.e. v = constant  
 
Isothermal process 
When n = 1   pv = constant,     i.e. T = constant 
 
Reversible Adiabatic process 
When n = γ Pvγ = constant,                        i.e. Reversible Adiabatic 
 
Polytropic Process 
This is any other process apart from the four special cases, a particular value when 
“n” is greater than one but less than γ is shown as curve 3 on the diagram below but 
the value could be anywhere within the compression and expansion quadrants of the 
diagram 

n=0 

Volume 

P 
r 
e 
s 
s 
u 
r 
e 

n=1 

1>n<γ 
n=γ n=∞ 

1 6 

5 4 
3 

2 

9 
8 

7 

Polytropic processes 

10 

 
 
Curve 1 is constant pressure cooling, Curve 6 is constant pressure heating both (n = 
0) 
Curve 2 is isothermal compression,  Curve 7 is isothermal expansion both (n = 1) 
Curve 3 is a reversible polytropic compression Curve 8 Expansion both (1<n>γ) 
Curve 4 reversible adiabatic compression Curve 9 reversible adiabatic expansion (n=γ 
) 
Curve 5 is constant volume heating, Curve 10 is constant volume cooling (n = :) 
Note that, since γ, is always greater than one, then curve 4 must lie between curves 2 
and 5; similarly, Curve 9 must lie between curves 7 and 10. 
For a vapour a generalisation such as the above is not possible.  
Tables must be used to find the properties at the end states. 
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Adiabatic process 
pVγ=C 

mCv(T2-T1) 

P1V1-P2V2 
γ-1 

0 

Isothermal 
Process 
pV=C 

U2-U1=0 
Since T2=T1 

P1V1 Ln V2 
V1 

P1V1 Ln V2 
V1 

Polytropic Process 
pVn=C 

mCv(T2-T1) 

P1V1-P2V2 
n-1 

γ-n     Work 
γ-1    done 

Heating at Constant 
Pressure 

mCv(T2-T1) 

P(V2-V1) 

P(V2-V1) + 
mCv(T2-T1) 

Heating at Constant 
volume 

mCv(T2-T1) 

Since no movement 
W=0 

mCv(T2-T1) 

Expansion and Compression of Gasses Summary of equations 

 

Change of 
Internal energy 

U2 – U1 

Work Done 
W 

Heat Exchange 
Q=W+( U2 – U1) 

 

x 

Constant Volume process = Isochoric.  Constant Pressure = Isobaric. Constant temperature = Isothermal 
 
Polytropic Process = No property remains constant. The heat transfer is equal to the sum of the internal energy plus the work transfer. It cannot be evaluated directly 
 
Adiabatic Process = The heat transfer to or from the surroundings is zero. During a reversible adiabatic process in a closed system, the heat transfer is zero and the work 
transfer is equal to the change of internal energy 
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Non flow process examples 
 
1 0.03m3 of gas, initially at a pressure of 1.4 MN/m2 and temperature 150°C, is 

expanded in a closed system to a volume of 0.2 m3  according to the law  
pV1.2  = C.   
For the gas R = 640 J/kgK  and cp= 2000 J/kgK 
Calculate  

a) The mass of the gas 
b) The change of internal energy 
c) The heat flow through the cylinder walls sating its direction. 

 
 
As with all examples a diagram is essential to picture the process. In this case a p-V 
will be required a table to  collate the values will also be usefull. 
 

 

 P V T 

1 14 bar 0.03m3 423K 

2  0.2m3  

    

 
 
 
Since we have pV and T at point 1 the mass can be found using the equation 
 
 
 
 
 
 
 
For the internal energy we need the temperature and since we have the volume ratio 
we can  
use the polytropic relationship 
 
 
 
 
 
 
 
The change of internal energy can now be found using the following 
 
 
 
We have been given cp  and R so cv is found from 
 
 
 
 

1 

2 

Volume V1 V2 

P2 

P1 
Pressure 

111 mRTVp =

kg
RT

Vpmass 155.0
423640

03.01014 5

1

11 =
×

××==

K
V
VTT

n

289
2.0

03.0423
12.11

2

1
12 =







=







=

−−

( )1212 TTmcUU v −=−

kgK
JRcc pc 13606402000 =−=−=

1

2

1

1

2

−









=

n

V
V

T
T



South Tyneside College  Class  One Applied Heat         Module 2  Thermodynamic processes 
 2-20 
 

 
 
 
 
 
 
Since this is an expansion the temperature has fallen giving a drop in internal energy 
The heat flow is obtained from the Non Flow Energy Equation 
 
 
 
But we need the work transfer first 
 
We can calculate the work transfer for the polytropic process using 
 
 
 
 
However since we have already have the temperatures so we can use the equation 
 
 
 
To modify the equation for work to give 
 
 
 
 
 
 
 
This gives a work transfer of  66.46 kJ out of the system, but the internal energy has 
only fallen by 28.24 kJ so the extra energy must have come from somewhere and the 
only option left is a heat transfer, hence 
 
 
 
 
 
 
 
Since the process 1 to 2 is an expansion the work transfer is positive, the internal 
energy has fallen (negative) and this has provided some of the work energy, the 
remaining work transfer can only be the result of heat transfer into the system 
 
 
 
 
 
 
 
 
 
 

( )4232891360155.012 −×=− UU

kJUU 24.2812 −=−

( )12 UUWQ −+=

1
2211

−
−=

n
VpVpW

mRTVp =

( )
1

21

−
−=

n
TTmRW

( ) kJW 46.66
12.1

289423640155.0 =
−

−×=

( ) kJQ 22.3824.2846.66 =−+=

( )12 UUWQ −+=
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2 1m3 of air at 110 kN/m2 and 15°C is compressed adiabatically in a close 
system to one quarter of its original volume. 
The air is then cooled at constant pressure until its temperature is 15°C.   
The air is then expanded back to its original condition. 
For air γ = 1.4 
Calculate 

a) The temperature and pressure at the end of compression. 
b) The volume at the end of heat rejection. 
c) The work transfer during compression and constant pressure 

cooling. 
d) The polytropic exponent of the expansion process.  

 
 
We must first draw a p-V diagram to picture the process and again a table is useful to 
collate the data as it is calculated. 
 

 P bar V m3 T K 

1 1.1  1  288 

2 7.66 0.25 501 

3 7.66 0.1437 288 

 
 
 
 
Using basic relationships we can find  T2, P2 and V3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Work transfer 1 to 3 is given by the adiabatic process and the constant volume 
process. 
 
 
 
 
 
 
 
 
 
 
 

1

2

1

1

2

−









=

γ

V
V

T
T

1 

2 

Volume V1 V2 

P2 

P1 

Pressure 
3 

P3 

V3 

pVγ=C 

PVn =C 

γγ
2211 VpVp =

( )232
2211

1
VVpVpVpW −+

−
−=

γ

K
V
VTT 501

25.0
1288

14.11

2

1
12 =






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



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
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The work transfer is negative for the compression process as expected 
 
 
 
Using the equation                                 for the expansion process re-arranging  and 
taking logs of both side gives      
 
 
 
 
 
 
 
 
From this the index of expansion is found to be “1” which is expected since this was 
an isothermal process.  
 
 
 
All examples on non flow processes follow the same pattern,  

•  Draw the process on a pV diagram,  
•  Identify the data that has been given,  
•  Calculate the required data,  
•  Answer the question using the relevant equation. 

You may have to vary the equations depending what information is given but 
remember you can not make up your own. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

kJW 175.285−=

nn VpVp 1133 =









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1
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
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66.7log n
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THE SECOND LAW OF THERMODYNAMICS 
 
The First Law based on the conservation of energy says that work cannot be produced 
during a cycle without some supply of heat.  
It basically says that what goes into a system either stays there or comes out again, 
another way of saying this is that the net work output can never be greater than the 
heat supplied, there is no concept of how effective the energy transfer has been 
therfore the efficiency of the transfer could be 100%. 
 
The Second Law is a statement of the fact that some heat must always be rejected 
during the cycle, and therefore the net work output must always be less than the heat 
supply so that the cycle efficiency is always less than 100%.  
 
The second law can be shown on a diagram considered to be a schematic diagram of a 
heat engine cycle and is shown below 
 
 

Hot Reservoir 

Cold Reservoir 

Heat Supply 
Q1 

Heat Rejected 
Q2 

Net Work Output 
W 

Work producing device 
operating in a clockwise 

Cycle 

 
Thus the Second Law implies that if a system is to undergo a cycle and produce work, 
it must operate between at least two reservoirs of different temperature, however 
small this difference may be.   
Thus the second law applied to a work producing heat engine is given by 
 
   Net Work = Heat Supplied  - Heat rejected 
 
 
 
 
Other cycles can be devised during which the net work is done on the system while a 
net amount of heat is rejected.  In this case the quantities are of opposite sign, i.e. Q1, 
is the heat rejected, Q2 is the heat supplied, and W is the net work done on the system.   
Such a cycle would be a vapour compression refrigeration plant. 
 
 

21 QQW −=
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Hot Reservoir 

Cold Reservoir 

Heat Supply 
Q2 

Heat Rejected 
Q1 

Work Input   W 
Work absorbing device 

operating in on  
anticlockwise Cycle 

 
 
 
 
An important consequence of the Second Law is that, work is a more valuable form of 
energy transfer than heat: 
 
Heat can never be transformed continuously and completely into work, whereas work 
can always be transformed continuously and completely into heat, and, if properly 
used, can even result in a supply of heat which is greater than the quantity of work 
expended such as the refrigeration cycle used as a heat pump. 
These cycles are dealt with in detail in further sections 
 
 
The Second Law cannot be deduced from the First  but like the First Law, its validity 
rests upon the fact that neither the law, nor any of its consequences, have ever been 
disproved by experience.   
 
SUMMARY  
The implications of the second law of thermodynamics are as follows: 
 
•  Heat transfer will only occur and will always naturally occur when a temperature 

difference exists and always naturally down the temperature gradient 
  
•  If, due to temperature difference, there is heat transfer availability then work 

transfer is always possible. However, there is always some heat transfer loss. 
 
•  Temperature can be elevated but not without the expenditure of external energy. 

Elevation of temperature cannot occur unaided. 
 
•  There is no possibility of work transfer if only a single heat energy source or 

reservoir at a fixed temperature is available. 
 
•  If work transfer is supplied to a system, it can all be transformed in heat energy. 
 
•  No contradiction of the second law of thermodynamics has been demonstrated. 

21 QWQ +=
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Entropy 
The term and concept of entropy was introduced in the nineteenth century by 
Clausius. 
It is a property of a system and is given the symbol “S” Uppercase referring to the 
entropy of  a system in J/K, or lower case “s” referring to the specific entropy J/kg K. 
It is used as a means of providing quick solutions to problems dealing with the 
adaiabatic expansion and compression of gasses and vapours, in these cases it is the 
change of entropy that we are interested in rather than a particular value. 
Many text books have been written on this topic which is difficult to visualise, 
however a common explanation is to consider it as a measure of the randomness of a 
system or a measure of the disorder in the microstate. 
The molecules of a system may be distributed  more or less at random in a system, a 
liquid being more random than a crystal and consequently has a higher entropy, the 
randomness of distribution concerns the extent to which the properties of a very small 
portion, a microstate, of a large system deviate from the average for the whole system. 
Thus a third law of thermodynamics has been developed: 
“At the absolute zero of temperature the entropy of a perfect crystal of a substance is 
zero.” 
Entropy can also be considered as a measure of  how efficiently energy can be 
converted into work. 
In all real processes the entropy of the system increases and we are able to extract less 
work from the system than would have been the case if the same process had been 
made reversibly at constant entropy. 
Thus associated with the increase of entropy is the “loss” of some energy which could 
have been used for work. 
The energy does not vanish as this would violate the first law, it becomes degraded in 
that it is less useful for work. 
The increase of entropy is an irreversible change and is thus a measure of the extent to 
which the energy becomes degraded in the change. 
So in order to extract the maximum amount of useful energy from a system all 
changes must be performed in a reversible manner. 
 
Determination of Entropy values 
The change in entropy can be found from a knowledge of the quantity of heat 
transferred only during a reversible non flow process. 
Since no real process is reversible, values of entropy cannot be found from 
measurements of heat and temperature in direct experiments, however it is a property 
and can thus be expressed in terms of other properties in real processes. 
Temperature / Entropy Diagrams are a useful way of illustrating processes and 
cycles, the area under a T-s diagram represents heat so the area is given as 
 
 

∫=
2

1
Tds Q   from which 

T
dQ ds =  

 
 
 
 

1 

2 

S 

T  

ds 

Temperature - Entropy 
Diagram 
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Since it is the change in entropy that we require, “real” fluid values of specific 
entropy can be obtained from tables. 
However for a gas we must calculate them so we need some information regarding 
the process involved during the entropy change. 
 
A temperature entropy diagram for a gas has lines of constant pressure and lines of 
constant volume, since we know the equations for heat flow during these processes 
we can evaluate the equation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The temperature entropy diagram for a perfect gads consist of three main lines  
 
Isothermal lines which are horizontal 
Isobaric lines Constant pressure shown chain dotted above 
Isochoric lines Constant volume shown solid above 
 
Note that the volume lines are steeper than the pressure lines and that volumes 
increase towards the right and pressure increases towards the left. 
Temperature is increasing upwards and entropy increases towards the right. 
 
Since we have lines of constant volume, pressure and temperature on this diagram the 
integral can be evaluated for these processes and the change in entropy determined 
 
 
 
 
 

T 
e 
m 
p 
e 
r 
a 
t 
u 
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e  

Entropy 

Increasing
Pressure Volume 

Isothermal  

Constant Volume 

Constant Pressure 
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Entropy Change Constant Volume 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For a constant volume process   ( )12 TTcmQ v −××=  therefore dTcmdQ v ××=  
 

Substituting this value in the equation   
T

dQ ds =  or ∫=−
2

1
12 T

dQ S S  

gives ∫
××=−

2

1

v
12 T

cm S dTS  and hence    ∫×=−
2

1
v12 T

cm S dTS  

 
 
Note that the mass is included in this equation and is a constant, it could be left out 
and the specific entropy values would be obtained.   
The symbol would then be lower case s. 
Integrating 1/T gives a result similar to that for isothermal work and result in the 
following equation 
 

1

2
v12 T

cm S TLnS ××=−  

 
Entropy Change Constant Pressure 
In this case the process line on the diagram is less steep but the procedure is identical 
with a similar result 

( )12 TTcmQ p −××=    dTcmdQ p ××=  

 

1

2
p12 T

cm S TLnS ××=−  

Since cp is greater than cv the entropy change between the same temperatures 
will be greater for a constant pressure process than a constant volume process. 

T 
e 
m 
p 
e 
r 
a 
t 
u 
r 
e  

Entropy S1 S2 

1 

2 

Constant Volume 
Proces 

T2 

T1 
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Entropy Change Isothermal Process 
This is determined in exactly the same way only in an isothermal process Q=W 
 

Therefore ∫=
2

1 v
dv W  substituting this in the relevant equation with T 

constant gives ∫=−
2

1
12 vT

pV S dvS  but     Rm
T
pV ×=  and following the same 

integration as for isothermal work we have 
 

1

2
12 V

Rm S VLnS ××=−   or  
2

1
12 p

Rm S pLnS ××=−  

 
Entropy Change Polytropic Process 
In this pressure, volume and temperature change throughout the process which makes 
it difficult to evaluate the integral. 
However it is the end states that dictate the entropy change not the process so it does 
not matter how we get there. 
So a polytropic process can be replaced by any two other processes providing we obey 
a couple of rules. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this case we can calculate the change by a constant volume process between the 
Temperatures T2 and T1, followed by an isothermal process.  
The isothermal process must be between the volumes V1 and V2 because the slope of 
this line is steeper than the pressure line hence the position of V1 T2 on the diagram 
will not be the same as p1 T2. 
In actual practice which ever process that is used for the change between the 
temperature will dictate the Ln ratio for the isothermal process. 
In solving these problems it is important to get the diagram correct and be guided by 
the direction of the process, because the numeric value of Ln for a particular ratio is 

T 
e 
m 
p 
e 
r 
a 
t 
u 
r 
e  

Entropy 
S1 S2 

1 

2 

Constant Volume 
Proces 

T2 

T1 

A 

SA 



South Tyneside College  Class  One Applied Heat         Module 2  Thermodynamic processes 
 2-29 
 

the same for the inverse apart from the sign change, hence you could become 
confused with addition and subtraction of negative quantities 
Reversible Flow Processes 
Although this section deals with non flow process we must consider flow processes 
which in practice are usually highly irreversible but it is sometimes convenient to 
assume that a flow process is reversible in order to provide an ideal comparison.   
Imagine you were acting as an observer and travelled with the flowing fluid you 
would appear to see a change in thermodynamic properties as in a non-flow process.   
Such would be the case in a reversible adiabatic process for a perfect gas, you would 
appear to see a process pvγ  = constant taking place, but the work input would not be 

given by ∫
2

1
pdv , or by the change in internal energy W =(U2 –U1) 

 Some work is done by virtue of the forces acting between the moving gas and its 
surroundings.   
For example, for a reversible adiabatic flow process for a perfect gas, from the flow 
equation  
 

WhcQhc ++=++ 2

2
2

11

2
1

22
 

 
Then since Q = 0 
 

12

2
1

2
2

2
hhccW −+−=−  

 
 
Also, since the process is assumed to be reversible, then for a perfect gas, pvγ = 
constant.  This equation can be used to fix the end states.  Note that even if the kinetic 
energy terms are negligibly small the work input in a reversible adiabatic flow process 
between two states is not equal to the work input in a reversible adiabatic non-flow 
process between the same states  as given by equation   
 
This concept will  be used later when we look at gas turbine cycles. 
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Entropy Example 1 
In a reversible process 0.3m3 of Nitrogen at a pressure of 1.2 bar and temperature of 
25°C is heated at constant volume to a pressure of 4.8.bar.   
It is then cooled at constant pressure back to the original temperature. 
For Nitrogen; R=297 J/kgK,  cp=1040 J/kgK 
 
a) Sketch the process on a Temperature- Entropy diagram. 
b) Calculate 

i) The net flow of heat during the process 
ii) The net change of entropy. 

 
 
Remember this is a perfect gas and on the T-s diagram the volume lines would be 
steeper than the pressure lines. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We could start by calculating the mass since we need heat and entropy rather than 
values based on unit mass. 
Using the equation of state gives 
 

 

 
111 TRmVp ××=×

kg407.0
298297

3.0102.1 5

=
×

××==
1

11

RT
Vpm

T 
e 
m 
p 
e 
r 
a 
t 
u 
r 
e  

Entropy 
S3 S2 

1 

2 

Constant Volume 
Proces 

T2 

T1 

S1 

3 

Constant Pressure 
Proces 



South Tyneside College  Class  One Applied Heat         Module 2  Thermodynamic processes 
 2-31 
 

We also need the temperature at the end of the heating process, for this we can use the 
equation of state again since it is a constant volume process we know the final 
pressure. 
 
 

 

 
Heat supply at constant volume is given by 
 

 

 
Heat removed at constant pressure is given by 
 

 
 
Net heat flow = 270.14 – 378 13 = 107.98 kJ out of the system 
 
The T-s diagram shows that the entropy increases during the heating process at 
constant volume and then decreases during the constant pressure heat removal. 
 
For the constant volume process 

 

( )23 TT −×= pcmremovedHeat 

222 TRmVp ××=×

K1192
407.0297

3.0108.4 5

=
×

××==
mR

VpT 22
2

( )12 TT −×= vcmsupplyHeat 

vp c cR −= J/kgK 743297-1040R cc pv ==−=

( )2981192 −××= 7430.4067supplyHeat 

kJ270.147supplyHeat =

( )1192298 −××= 10400.4067removedHeat 

kJ-378.13removedHeat =

1

2
v12 T

TLncmSS ××=−

298
1192Ln7430.4067SS 12 ××=−
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For the constant pressure process 
 
 

 
 
The net change in entropy is therefore the difference between these values which is 
 –167.5 J/K  
 
 
Entropy Example 2 
In a series of reversible processes, 2 kg of air is heated at constant pressure from 10 
bar 50°C to 250°C. It is then expanded isothermally until its pressure is 5 bar, the air 
is then expanded in a polytropic process to a pressure and temperature of 2 bar 140°C. 
For Air; γ=1.4,  cv= 718 J/kgK 
 
c) Sketch the processes on a Temperature- Entropy diagram. 
d) Calculate the change of entropy for each process 
 
Remember this is a perfect gas and on the T-s diagram the volume lines would be 
steeper than the pressure lines and pressure, volume and temperature change in a 
polytropic process. 
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The T-s diagram shows that the entropy increases during the constant pressure heating 
process and also during the isothermal expansion, there is a further increase during 
the polytropic process.  
 
For the constant pressure process 

 

 
For the Isothermal process between the pressures of 10 bar and 5 bar 

 
 

 
 

 
 
 
 
The poplytropic process can be replaced with an isothermal process between the 
pressures of 5 bar and 2 bar, this will have the effect of increasing the entropy, this 
will be followed by a constant pressure process to the lower temperature which will 
have the effect of reducing the entropy. 
 

vp c cR −= J/kgK2877181005R =−=

1

2
p12 T

TLncmSS ××=−

3

2
23 p

pLnRmSS ××=−

323
523Ln10052SS 12 ××=−

5
10Ln2872SS 23 ××=−

J/K 968.7SS 12 =−

J/K 398SS 23 =−

v

p

c
c

=γ pv cc =×γ
J/kgK 10057184.1 =×=pc
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For the isothermal operation 

 

 

 
 
 
 
For the constant pressure operation 
 

 

 
 

 
 
 
 
 
The change in entropy for this process is the addition of theses two values 

 

 
 
 
 
 
 

4

3
3x p

pLnRmSS ××=−

2
5Ln2872SS 3x ××=−

J/K 526.95SS 3x =−

3

4
px4 T

TLncmSS ××=−

523
413Ln10052SS x4 ××=−

J/K -474.63SS x4 =−

J/K 474.63-526.95SS 34 =−

J/K 52.32SS 34 =−


