VHDL Cheat-Sheet

OCopyright: 2007 Bryan J. Mealy

Concurrent Statements

Sequential Statements

Concurrent Signal Assignment
(dataflow model)

Signal Assignment

target <= expression;

target <= expression;

A <= B AND C;

DAT <= (D AND E) OR (F AND G);

A <= B AND C;

DAT <= (D AND E) OR (F AND G);

Conditional Signal Assignment
(dataflow model)

if statements

target <= expressn when condition else
expressn when condition else

if (condition) then
{ sequence of statements }
elsif (condition) then

expressn; { sequence of statements }
else --(the else is optional)
{ sequence of statements }
end if;
if (SEL = “111”) then F CTRL <= D(7);
F3 <= ‘1’ whi L="0’" AND M='0’ 1 —
g :h:: EL:‘l, AND M:‘l,; :1:: elsif (SEL = “110”) then F CTRL <= D(6);
O elsif (SEL = “101”) then F CTRL <= D(1);
! elsif (SEL = “000”) then F CTRL <= D(0);
else F CTRL <= ‘0';
end if;
Selective Signal Assignment case statements
(dataflow model)
case (expression) is

with chooser expression select
target <= expression when choices,
expression when choices;

when choices =>
{sequential statements}
when choices =>
{sequential statements}
when others => -- (optional)
{sequential statements}
end case;

with SEL select

MX OUT <= D3 when “117,
D2 when “107,
D1 when “017,
DO when “00”,
‘0’ when others;

case ABC is
when “100” =>
when “011” =>
when “1117 =>

end case;

F OUT <= ‘1’;
F OUT <= ‘1’;
F OUT <= ‘1’;
when others => F OUT <= ‘0’;

Process
(behavioral model)

opt label: process(sensitivity 1list)
begin
{sequential statements}

end process opt labely

procl: process(A,B,C)

begin

if (A = ‘1" and B = ‘0’) then
F OUT <= ‘1’;

elsif (B = ‘1’ and C = ‘1’) then
F OUT <= ‘1’;

else
F_OUT <= ‘0’;

end if;

end process procly

Description CKT Diagram | VHDL Model
Typical logic w entity my ckt is
circuit Port (A,B,C,D : in std logic;

F : out std_logic);
end my ckt;

architecture cktl of my_ ckt is
begin

F <= (A AND B) OR (C AND (NOT D)) ;
end cktl;

architecture ckt2 of my_ckt is

begin
F <= ‘1’ when (A = ‘1’ AND B = ‘1’) else
‘1’ when (C = ‘1’ AND D = ‘0’) else
' ;
< ° o e end ckt2;
4:1 Multiplexor " entity MUX 4T1 is

Port (SEL in std logic_vector (1l downto 0);
D IN : in std_logic_vector (3 downto 0);
F : out std_logic);
end MUX 4T1;

[
;‘ architecture my mux of MUX 4Tl is
g begin
F <= D_IN(0) when (SEL = "00") else
?{ N‘i D_IN(1) when (SEL = "01") else
D _IN(2) when (SEL = "10") else
zZ o D_IN(3) when (SEL = "11") else
D‘ %) 0
end my mux;
2:4 Decoder entity DECODER is
L Port (SEL in std_logic_vector(l downto 0);
ti F : out std_logic_vector(3 downto 0));
end DECODER;
§ architecture my dec of DECODER is
o begin
& with SEL select
o F <= "0001" when "0O",
"0010" when "O1",
‘“1 "0100" when "10",
— "1000" when "11",
& "0000" when others;
end my_dec;
8-bit register entity REG is
with chip load 5 port (LD,CLK : in std_logic;
enable O‘ D IN : in std_logic_vector (7 downto 0);
a D OUT : out std_logic_vector (7 downto 0));
w¢ end REG;
architecture my reg of REG is
Q@ begin
o« process (CLK,LD)
begin
T m* T if (LD = 'l' and rising_edge (CLK)) then
D OUT <= D_IN;
oz x end if;
- 4 o end process;

end my reg;

8-bit up/down
counter with
asynchronous
reset

8
= COUNT

COUNT_8B

LD ——»
RESET ———|
Up —»
DW-—7£—>
CLK ———»

entity COUNT_8B is
port (RESET,CLK,LD,UP in std _logic;
DIN : in std logic_vector (7 downto 0);
COUNT out std logic_vector (7 downto 0));
end COUNT_ 8B;

architecture my count of COUNT_ 8B is

signal t cnt std_logic_vector(7 downto 0);
begin
process (CLK, RESET)
begin
if (RESET = '1') then
t_cnt <= (others => ‘0’); -- clear
elsif (rising_edge (CLK)) then
if (LD = '1') then t_cnt <= DIN; -- load
else
if (Up = '1l') then t cnt <= t cnt + 1; -- incr
else t cnt <= t cnt - 1; -- decr
end if;
end if;
end if;

end process;
COUNT <= t_cnt;
end my count;

